ALTERNATING UNITS AS FREE FACTORS IN THE GROUP OF UNITS OF INTEGRAL GROUP RINGS
Contribuinte(s) |
UNIVERSIDADE DE SÃO PAULO |
---|---|
Data(s) |
20/10/2012
20/10/2012
2011
|
Resumo |
Let G be a group of odd order that contains a non-central element x whose order is either a prime p >= 5 or 3(l), with l >= 2. Then, in U(ZG), the group of units of ZG, we can find an alternating unit u based on x, and another unit v, which can be either a bicyclic or an alternating unit, such that for all sufficiently large integers m we have that < u(m), v(m)> = < u(m)> * < v(m)> congruent to Z * Z. CNPq[303.756/82-5] Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) FAPESP-Brazil[00/07.291-0] Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) FAPESP[06/59817-2] Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) |
Identificador |
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, v.54, p.695-709, 2011 0013-0915 http://producao.usp.br/handle/BDPI/30684 10.1017/S0013091510000428 |
Idioma(s) |
eng |
Publicador |
CAMBRIDGE UNIV PRESS |
Relação |
Proceedings of the Edinburgh Mathematical Society |
Direitos |
restrictedAccess Copyright CAMBRIDGE UNIV PRESS |
Palavras-Chave | #integral group rings #free groups #units #BICYCLIC UNITS #FREE SUBGROUPS #Mathematics |
Tipo |
article original article publishedVersion |