1000 resultados para Cuk Integrated
Resumo:
The design and fabrication of a high speed, 12-channel monolithic integrated CMOS optoelectronic integrated circuit(OEIC) receiver are reported.Each channel of the receiver consists of a photodetector,a transimpedance amplifier,and a post-amplifier.The double photodiode structure speeds up the receiver but hinders responsivity.The adoption of active inductors in the TIA circuit extends the-3dB bandwidth to a higher level.The receiver has been realized in a CSMC 0.6μm standard CMOS process.The measured results show that a single channel of the receiver is able to work at bit rates of 0.8~1.4Gb/s. Altogether, the 12-channel OEIC receiver chip can be operated at 15Gb/s.
Resumo:
A technology for the monolithic integration of resonant tunneling diodes (RTDs) and high electron mobility transistors (HEMTs) is developed. Molecular beam epitaxy is used to grow an RTD on a HEMT structure on GaAs substrate. The RTD has a room temperature peak-to-valley ratio of 5.2:1 with a peak current density of 22.5kA/cm~2. The HEMT has a 1μm gate length with a-1V threshold voltage. A logic circuit called a monostableto-bistable transition logic element (MOBILE) circuit is developed. The experimental result confirms that the fabricated logic circuit operates successfully with frequency operations of up to 2GHz.
Resumo:
A monolithically integrated optoelectronic receiver is presented. A silicon-based photo-diode and receiver circuits are integrated on identical substrates in order to eliminate the parasitics induced by hybrid packaging. Implemented in the present deep sub-micron MS/RF (mixed signal, radio frequency) CMOS,this monolithically OEIC takes advantage of several new features to improve the performance of the photo-diode and eventually the whole OEIC.
Resumo:
The effect of changing Be doping concentration in GaAs layer on the integrated photosensitivity for nega- tive-electron-affinity GaAs photocathodes is investigated. Two GaAs samples with the monolayer structure and the muhilayer structure are grown by molecular beam epitaxy. The former has a constant Be concentration of 1 × 10^19 cm^-3, while the latter includes four layers with Be doping concentrations of 1 × 10^19, 7 × 10^18, 4 × 10^18, and 1 × 10^18 cm^-3 from the bottom to the surface. Negative-electron-affinity GaAs photocathodes are fabricated by exciting the sample surfaces with alternating input of Cs and O in the high vacuum system. The spectral response results measured by the on-line spectral response measurement system show that the integrated photosensitivity of the photocathode with the muhilayer structure enhanced by at least 50% as compared to that of the monolayer structure. This attributes to the improvement in the crystal quality and the increase in the surface escape probability. Different stress situations are observed on GaAs samples with monolayer structure and muhilayer structure, respectively.
Resumo:
A monolithic integrated CMOS preamplifier is presented for neural recording applications. Two AC-coupied capacitors are used to eliminate the large and random DC offsets existing in the electrode-electrolyte interface. Diode-connected nMOS transistors with a negative voltage between the gate and source are candidates for the large resistors necessary for the preamplifier. A novel analysis is given to determine the noise power spectral density. Simulation results show that the two-stage CMOS preamplifier in a closed-loop capacitive feedback configuration provides an AC in-band gain of 38.8dB,a DC gain of 0,and an input-referred noise of 277nVmax, integrated from 0. 1Hz to 1kHz. The preamplifier can eliminate the DC offset voltage and has low input-referred noise by novel circuit configuration and theoretical analysis.
Resumo:
We report a wavelength tunable electro-absorption modulated DBR laser based on a combined method of SAG and QWI. The threshold current is 37mA and the output power at 100mA gain current is 3.5mW. When coupled to a single-mode fiber with a coupling efficiency of 15% ,more than a 20dB extinction ratio is observed over the change of EAM bias from 0 to -2V. The 4.4nm continuous wavelength tuning range covers 6 channels on a 100GHz grid for WDM telecommunications.
Resumo:
A semiconductor optical amplifier and electroabsorption modulator monolithically integrated with a spotsize converter input and output is fabricated by means of selective area growth,quantum well intermixing,and asymmetric twin waveguide technology. A 1550-1600nm lossless operation with a high DC extinction ratio of 25dB and more than 10GHz 3dB bandwidth are successfully achieved. The output beam divergence angles of the device in the horizontal and vertical directions are as small as 7.3°× 18.0°, respectively, resulting in a 3.0dB coupling loss with a cleaved single-mode optical fiber.
Resumo:
This paper reports on the design, fabrication, and performance of an integrated electro-absorptive modulated laser based on butt-joint configuration for 10Gbit/s application. This paper mainly aims at two aspects. One is to improve the optical coupling between the laser and modulator; another is to increase the bandwidth of such devices by reducing the capacitance parameter of the modulator. The integrated devices exhibit high static and dynamic characteristics. Typical threshold current is 15mA,with some value as low as 8mA. Output power at 100mA is more than 10mW. The extinction characteristics,modulation bandwidth, and electrical return loss are measured. 3dB bandwidth more than 10GHz is monitored.
Resumo:
A 1.60μm laser diode and electroabsorption modulator monolithically integrated with a novel dualwaveguide spot-size converter output for low-loss coupling to a cleaved single-mode optical fiber are demonstrated.The devices emit in a single transverse and quasi single longitudinal mode with an SMSR of 25.6dB. These devices exhibit a 3dB modulation bandwidth of 15. 0GHz, and modulator DC extinction ratios of 16.2dB. The output beam divergence angles of the spot-size converter in the horizontal and vertical directions are as small as 7. 3°× 18. 0°,respectively, resulting in a 3. 0dB coupling loss with a cleaved single-mode optical fiber.
Resumo:
A novel 1.55μm laser diode with spot-size converter is designed and fabricated using conventional photolithography and chemical wet etching process.For the laser diode,a ridge double-core structure is employed.For the spot-size converter,a buried ridge double-core structure is incorporated.The laterally tapered active core is designed and optically combined with the thin and wide passive core to control the size of mode.The laser diode threshold current is measured to be 40mA together with high slop efficiency of 0.35W/A.The beam divergence angles in the horizontal and vertical directions are as small as 14.89°×18.18°,respectively,resulting in low-coupling losses with a cleaved optical fiber (3dB loss).
Resumo:
A novel 1.55-μm spot-size converter integrated electroabsorption modulator was designed with conventional photolithography and chemical wet etching process. A ridge double-core structure was employed for the modulator, and a buried ridge double-core structure was incorporated for the spot-size converter. The passive waveguide was optically combined with a laterally tapered active waveguide to control the mode size. The figure of merit is 4.1667 dB/V(/100 μm) and the beam divergence angles in the horizontal and vertical directions were as small as 11.2 deg. and 13.0 deg., respectively.
Resumo:
An improved butt coupling method is used to fabricate an electroabsorption modulator (EAM) monolithically integrated with a distributed feedback (DFB) laser. The obtained electroabsorption-modulated laser (EML) chip with the traditional shallow ridge exhibits very low threshold current of 12 mA, output power of more than 8 mW, and static extinction ratio of -7 dB at the applied bias voltage from 0.5 to -2.0 V.