939 resultados para Conceptos
Resumo:
Esta experiencia se realizó en el Colegio Nuestra Señora de Guadalupe. El proceso educativo debe ser continuo, para facilitar la formación de una persona autónoma, trabajamos coordinadamente con vistas a la inserción de los alumnos provenientes del Nivel Medio en forma no traumática en aquellas Facultades de la Universidad Nacional del Litoral, en las cuales Matemática y Química son áreas relevantes en los respectivos planes de estudio. La adquisición de aprendizajes significativos se realiza mediante la claridad informativa y la aplicación sistemática, graduada y diversa de los contenidos a situaciones cotidianas que profundizan la comprensión de los conceptos. La situación seleccionada para esta experiencia es un tema de mucha trascendencia, el tabaquismo, que permitió integrar los contenidos de Matemática, Química y Computación.
Resumo:
Esta investigación se propone responder a interrogantes iniciales que surgen en torno al planteamiento y ejecución de programas de actualización y capacitación, con la intensión de contribuir, en buena medida, a enriquecer nuestro conocimiento de lo que ocurre en el aula. En lo particular, centramos la atención en el papel de las explicaciones en la clase de matemáticas cuando se pretende introducir conceptos geométricos, específicamente la noción de semejanza en el nivel medio superior. Consideramos un modelo de investigación cualitativa, basada en el método etnográfico que toma a la observación como técnica de registro. Los participantes en la investigación son profesores en servicio del nivel medio superior.
Resumo:
En este trabajo se presenta un análisis de los resultados obtenidos en el examen diagnóstico de matemáticas, aplicado a los alumnos de nuevo ingreso en el CECYT “Juan de Dios Bátiz Paredes”, del I.P.N. Este análisis se realiza considerando los resultados obtenidos en la aplicación del mismo, durante un período de tres años. Los reactivos del examen están elaborados considerando los temas y clasificación especificados en el plan de estudios de la Secundaria, según el Ceneval. En habilidad matemática podemos mencionar: sucesiones numéricas, patrones numéricos, series espaciales, patrones espaciales, problemas aritméticos y problemas de razonamiento. El examen está dividido en: aritmética, álgebra y geometría. También se evalúa conceptos y operaciones y resolución de problemas. El informe destaca los reactivos con mayores y menores porcentajes de aciertos, documentando el tipo de errores más comunes que incurren y su relación que guarda con la enseñanza de las matemáticas. A partir de los resultados obtenidos se plantean acciones para que los alumnos puedan afrontar con buenos resultados los cursos de matemáticas del bachillerato.
Resumo:
Todos valoramos el papel de las instituciones educativas en el desarrollo del ser humano y en la transmisión de los valores y principios de la sociedad. La influencia del mundo económico y del mundo científico ha sido transferida al ámbito educativo a través de la incorporación de diferentes conceptos como son los de calidad y competencia, entre otros. Enrolados en la construcción del proyecto curricular del Colegio Babeque Secundaria, de República Dominicana, decidimos adoptar el enfoque de competencias. La experiencia compartida por la comunidad educativa fue muy rica. Seleccionamos y definimos doce competencias humanas generales, que permeando todas las áreas programáticas, como ejes transversales, contribuirían a formar el ser humano integral definido en nuestro proyecto de centro. En este trabajo se destaca la experiencia de los profesores del área de Matemática del Colegio, en el proceso de selección y definición de estas competencias, así como de su aplicación al proceso de enseñanza y aprendizaje.
Resumo:
En este trabajo se muestran los primeros pasos del proyecto de investigación que tiene como meta el diseño de una propuesta para la enseñanza – aprendizaje del Cálculo Diferencial e Integral (de una variable). Se espera que su implementación, entre otros aspectos, mejore la comprensión de los conceptos fundamentales del Cálculo a través del tratamiento y conversión de las distintas representaciones de los conceptos, promueva el uso de la visualización matemática como estrategia para la formación adecuada de los conceptos, sirva de soporte a los estilos de matematización de las materias de las carreras de ingeniería. La propuesta focaliza su acento en la visualización, considerando que la visualización matemática favorece un enfoque global, integrador, de las representaciones de varios sistemas, facilitando la formación adecuada de los conceptos y la resolución de problemas no rutinarios.
Resumo:
Tres semanas después de recibir la enseñanza de probabilidad, diez estudiantes de un bachillerato tecnológico fueron seleccionados para desarrollar una actividad extra-aula experimental, fundamentada en la aproximación de la frecuencia relativa a la probabilidad. Se utilizaron hojas de control y se videograbó la sesión. Inicialmente los estudiantes lanzaron volados individualmente y después se organizaron en equipos para analizar sus datos. En la interacción social en dos equipos se manifestó la confusión entre los conceptos de frecuencias relativa y absoluta, y se observó la subordinación de ideas de los miembros ante un líder conceptual. Los estudiantes en un inicio confundieron los valores de la variable aleatoria con el espacio muestra, lo cual corrigieron posteriormente; si bien expresaron una aproximación intuitiva a la ley de los grandes números, no lograron progresar en ella. En general los estudiantes se mostraron dubitativos al contestar a las preguntas de las hojas de control, a pesar del poco tiempo transcurrido desde la enseñanza.
Resumo:
La estructura conceptual de las razones trigonométricas, como la de cualquier concepto de la matemática escolar, se caracteriza por las estructuras matemáticas involucradas, las relaciones conceptuales y las relaciones de representación. De esta manera, en esta comunicación presento el análisis sobre los hechos, conceptos y estructura conceptual del campo conceptual, y las destrezas, razonamientos y estrategias del campo procedimental de las razones trigonométricas.
Resumo:
Con la propuesta, en mi clase se vale “meter la pata”, pretendo desarrollar en los estudiantes las competencias matemáticas y ciudadanas, a través de la participación activa al interior de las clases. Para ello, parto de dos premisas: (a) el error como una oportunidad para generar conocimiento y (b) las preguntas como el medio para lograr llegar a conceptos claros y argumentos válidos en relación con el objeto matemático que se estudia. Desarrollo la propuesta a partir de tres tareas diseñadas en la unidad didáctica Razones trigonométricas vistas a través de múltiples lentes que se fundamenta en el modelo del análisis didáctico. Los resultados obtenidos hasta el momento reflejan un aumento en el interés que los estudiantes tienen por el área, en el respeto por las ideas de otros y en la utilización de argumentos válidos.
Resumo:
En ese trabajo se analizan las respuestas de estudiantes de secundaria a tareas numéricas susceptibles de resolverse haciendo uso de sentido numérico. Se analizan las estrategias y los razonamientos de sentido numérico frente a los procedimientos algorítmicos y de aplicación de reglas. Se observa cómo el uso del sentido numérico queda condicionado por dificultades y errores en conceptos numéricos propios de niveles básicos y por el tipo de actividad. Las tareas con enunciados semejantes a los tradicionales presentan mayor aparición de reglas y algoritmos.
Resumo:
En este trabajo se aborda una trayectoria de investigaciones considerando el concepto de derivada. En primer lugar, se presentan investigaciones sobre el desarrollo de la comprensión del concepto y, posteriormente, investigaciones centradas en el aprendizaje de estudiantes para profesor de matemáticas de lo que se considera conocimiento adecuado para la enseñanza de dicho concepto. Esto conlleva, en cierto modo cierta transferencia del conocimiento en el sentido de que dichas investigaciones aportan información para el diseño de módulos de formación, permitiendo realizar investigaciones en el contexto de aula sobre el aprendizaje de los futuros profesores.
Resumo:
Este artículo se enmarca en el proyecto de investigación “Creación de metodologías que permitan la integración de ciencias y matemáticas en el proceso de enseñanza y aprendizaje de la educación diversificada costarricense”, que fuera realizado por un equipo interdisciplinario conformado por profesionales en las áreas de matemática, física, química, biología y sociología. Junto a una breve contextualización teórica y metodológica, el presente artículo ofrece algunos ejemplos con prácticas y contenidos que faciliten a los estudiantes aplicar los conceptos de razones y proporciones en el análisis de casos vinculados a la vida cotidiana, y que a su vez permiten la integración con otras disciplinas.
Resumo:
En este artículo se describe el desarrollo de un curso que trata de los conceptos de área, medida y conservación de área, el cual estuvo dirigido a profesores de matemáticas de nivel medio y superior. El trabajo se llevó a cabo en tres fases. En la primera se analizaron los conceptos de área, conservación y medida (de área). En la segunda se mostraron los resultados de algunas investigaciones asociadas con el tema de conservación y medida de área, entre los que destacan los estudios de Piaget y sus colaboradores, así como Kordaki y Potari. En la tercera se realizaron actividades que involucró el trabajo con estos conceptos en figuras geométricas planas y expresiones analíticas. En ese tenor, es que en este escrito se analizan estos conceptos, los resultados de investigaciones que se presentaron y analizaron en el curso, y las actividades realizadas.
Resumo:
Los conocimientos geométricos aparecen en las distintas culturas desde el principio, quizá unidos con los conceptos de belleza y armonía. En este trabajo se presenta un ejemplo de cómo este abordaje se puede llevar a cabo en la escuela en el nivel medio ligado con su aparición. Es posible encontrar múltiples ejemplos de distintos tipos de aplicaciones en los que los objetos geométricos y sus propiedades se hacen necesarios para estudiar las formas. Las catedrales góticas suministran un bello ejemplo en el que la geometría aparece no sólo en las formas de las construcciones arquitectónicas, sino en particular en las composiciones artísticas de las ventanas. Se propone realizar un análisis de cuáles fueron los conceptos geométricos que manejaron los constructores para lograr estas obras de arte.
Resumo:
Este documento centra su atención en la noción de variable como elemento básico de la construcción de conceptos relacionados a fenómenos de variación y cambio. Partimos de que la variable no es una idea construida como un objeto o proceso aislado, sino que surge necesariamente de la relación de al menos dos entidades cambiantes que en la mayoría de los casos una de ellas es la variable tiempo. Pretendemos realizar el estudio de la variable desde diferentes dimensiones: la epistemológica, la cognitiva, la didáctica y la sociocultural, para poder tener elementos que nos permitan determinar qué procesos favorecen la construcción de esta noción y asimismo realizar su caracterización.
Resumo:
Este artículo hace parte del trabajo “Criterios y Prácticas de Evaluación en torno a la Multiplicación”, tesis de maestría en proceso, la cual intenta contribuir al desarrollo del proyecto de investigación “Modelos y Prácticas Evaluativas de las Matemáticas en la Educación Básica. El caso del Campo Multiplicativo”, proyecto financiado por Colciencias y la Universidad Pedagógica Nacional (C´odigo1108-11-11328). Se realiza en este escrito un análisis del proceso de aprendizaje en torno al concepto de multiplicación desde la perspectiva sociocultural. Es pertinente señalar que la multiplicación es un concepto que se encuentra estrechamente relacionado con otros como: división, fracción, razón, proporción, función lineal,. . . y que conforman lo que Vergnaud (1994) ha denominado el Campo Conceptual Multiplicativo (CCM), por lo que su aprendizaje integra la necesidad de conectar estos conceptos con un campo de problemas y situaciones de tipo multiplicativo. En este sentido cobra importancia la cita de Sfard, en tanto, por ejemplo el aprendizaje de este concepto requiere un largo periodo de tiempo. En la primera parte del artículo se plantean algunos presupuestos teóricos que se comparten y ayudan a fundamentarlo, posteriormente se explicita qué es lo que se entiende por aproximación sociocultural del aprendizaje de la multiplicación, integrando la noción de competencia multiplicativa y finalmente se presenta los análisis de dos ejemplos en los cuales se muestra la complejidad de la multiplicación, en tanto se videncia el desarrollo de competencias cada vez más complejas.