999 resultados para Si limitation
Resumo:
GaAs epilayer films on Si substrates grown by molecular-beam epitaxy were investigated by the x-ray double-crystal diffraction method. The rocking curves were recorded for different diffraction vectors of samples. The results show that the unit-cell volumes of GaAs epilayers are smaller than that of the GaAs bulk material. The strained-layer superlattice buffer layer can improve the quality of the film, especially in the surface lamella. The parameter W' = W(expt)/(square-root \gamma-h\/gamma-0/sin 2-theta-B) is introduced to describe the quality of different depths of epilayers. As the x-ray incident angle is increased, W' also increases, that is, the quality of the film deteriorates with increasing penetration distance of the x-ray beam. Therefore, W' can be considered as a parameter that describes the degree of perfection of the epilayer along the depth below the surface. The cross-section transmission electron microscopy observations agree with the results of x-ray double-crystal diffraction.
Resumo:
We have applied the Green function theory in GW approximation to calculate the quasiparticle energies for semiconductors Si and GaAs. Good agreements of the calculated excitation energies and fundamental energy gaps with the experimental band structures were achieved. We obtained the calculated fundamental gaps of Si and GaAs to be 1.22 and 1.42 eV in comparison to the experimental values of 1.17 and 1.52 eV, respectively. Ab initio pseudopotential method has been used to generate basis wavefunctions and charge densities for calculating dielectric matrix elements and electron self-energies.
Resumo:
GaAs films made by molecular beam epitaxy with thicknesses ranging from 0.9 to 1.25-mu-m on Si have been implanted with Si ions at 1.2 MeV to dose of 1 x 10(15)/cm2. A rapid infrared thermal annealing and white light annealing were then used for recrystallization. Crystalline quality was analysed by using backscattering channeling technique with Li ion beam of 4.2 MeV. The experimental results show that energy selection is important for obtaining better and uniform recrystallized GaAs epilayers.
Resumo:
Interfacial formation processes and reactions between Au and hydrogenated amorphous Si have been studied by photoemission spectroscopy and Auger electron spectroscopy. A three-dimensional growth of Au metal cluster occurs at initial formation of the Au/a-Si:H interface. When Au deposition exceeds a critical time, Au and Si begin interdiffusing and react to create an Au-Si alloy region. Annealing enhances interdiffusion and a Si-rich region exists on the topmost surface of Au films on a-Si:H.
Resumo:
Alternating layers of Si(200 angstrom thick) and Ce(200 angstrom thick) up to 26 layers altogether were deposited by electron evaporation under ultrahigh vacuum conditions on Si(100) substrate held at 150-degrees-C. Isothermal, rapid thermal annealing has been used to react these Ce-Si multilayer films. A variety of analytical techniques has been used to study these multilayer films after annealing, and among these are Auger electron spectroscopy, Rutherford backscattering, X-ray diffraction, and high resolution transmission electron microscopy. Intermixing of these thin Ce-Si multilayer films has occurred at temperatures as low as 150-degrees-C for 2 h, when annealed. Increasing the annealing temperature from 150 to 400-degrees-C for 1 h, CeSi2 forms gradually and the completion of reaction occurs at approximately 300-400-degrees-C. During the formation of CeSi2 from 150-400-degrees-C, there is some evidence for small grains in the selected area diffraction patterns, indicating that CeSi2 crystallites were present in some regions. However, we have no conclusive evidence for the formation of epitaxial CeSi2 layers, only polycrystals were formed when reacted in the solid phase even after rapid thermal anneal at 900-degrees-C for 10 s. The formation mechanism has also been discussed in combining the results of the La-Si system.
Resumo:
The shear-deformation-potential constant XI-u of the conduction-band minima of Si has been measured by a method which we called deep-level capacitance transient under uniaxial stress. The uniaxial-stress (F) dependence of the electron emission rate e(n) from deep levels to the split conduction-band minima of Si has been analyzed. Theoretical curves are in good agreement with experimental data for the S0 and S+ deep levels in Si. The values of XI-u obtained by the method are 11.1 +/- 0.3 eV at 148.9 K and 11.3 +/- 0.3 eV at 223.6 K. The analysis and the XI-u values obtained are also valuable for symmetry determination of deep electron traps in Si.
Resumo:
The interaction of Co with Si and SiO2 during rapid thermal annealing has been investigated. Phase sequence, layer morphology, and reaction kinetics were studied by sheet resistance, x-ray diffraction, Auger electron spectroscopy, x-ray photoelectron spectroscopy, and scanning electron microscopy. With increasing annealing temperature, Co film on Si(100) is transformed sequentially into Co2Si, CoSi, and finally CoSi2 which corresponds to the minimum of sheet resistance. No evidence of silicide formation was observed for Co/SiO2 annealed even at the high temperature of 1050-degrees-C.
Resumo:
Using photoemission spectroscopy and Auger electron spectroscopy, the interfacial formation process and the reactions between Al and hydrogenated amorphous Si are probed, and annealing behaviors of the Al/a-Si:H system are investigated as well. It is found that a three-dimensional growth of Al metal clusters which includes reacted Al and non-reacted metal Al occurs at the initial Al deposition time, reacted Al and Si alloyed layers exist in the Al/a-Si:H interface, and non-reacted Al makes layer-by-layer growth forming a metal Al layer on the sample surface. The interfacial reactions and element interdiffusion of Al/a-Si:H are promoted under the vacuum annealing.
Resumo:
Side bands due to purely composition and combined composition-strain modulation in plan-view specimens of a nominally Ge0.5Si0.5(5nm)/Si(25nm) superlattice have been obtained by large-angle convergent-beam electron diffraction. The intensities of the side bands have been calculated from a periodic tension-compression model of the superlattice bilayer using the kinematical theory of electron diffraction. Accurate values of elastic strains in the bilayer and of the Ge content can be obtained in this way.
Resumo:
Two thermostable levels E(0.31) and E(0.58) related to Rh in Si were observed using deep level transient spectroscopy and double correlation deep level transient spectroscopy techniques. By means of thermal annealing and electron irradiation, the microscopic natures of these levels were identified for the first time. The levels E(0.31) and E(0.58) arise from by the same impurity center but have different charge states. Their microstructures are not related to a pure substitutional Rh atom, but correspond to a complex. This result is compared to our self-consistent theoretical calculation.