994 resultados para LIQUID-DROP SENSOR
Resumo:
This technical note describes the construction of a low-cost optical detector. This device is composed by a high-sensitive linear light sensor (model ILX554) and a microcontroller. The performance of the detector was demonstrated by the detection of emission and Raman spectra of the several atomic systems and the results reproduce those found in the literature.
Resumo:
The hydroalcoholic extracts prepared from standard leaves of Maytenus ilicifolia and commercial samples of espinheira-santa were evaluated qualitatively (fingerprinting) and quantitatively. In this paper, fingerprinting chromatogram coupled with Principal Component Analysis (PCA) is described for the metabolomic analysis of standard and commercial espinheira-santa samples. The epicatechin standard was used as an external standard for the development and validation of a quantitative method for the analysis in herbal medicines using a photo diode array detector. This method has been applied for quantification of epicatechin in commercialized herbal medicines sold as espinheira-santa in Brazil and in the standard sample of M. ilicifolia.
Resumo:
A method using HPTLC for quantitation of nifedipine in serum was developed and validated. It includes a liquid-liquid extraction, and carbamazepine as internal standard. Chloroform: ethyl acetate: cyclohexane (19:2:2, v/v/v) was the mobile phase. The method showed good relationship (r = 0.996) (2.00 to 25.00 ng/band, corresponding to 0.02 and 0.25 ng/µL in serum). The % RSD of intra-assay and inter-assay, were between 0.57 and 3.56 and 1.16 to 3.60, respectively. LOD and LOQ were 0.72 and 0.86 ng/band, respectively. The recovery values were between 93 and 102%. Rf for nifedipine and carbamazepine were 0.31 and 0.10, respectively.
Resumo:
Piplartine (PPTN) is an alkaloid amide found in Piper species that presents different activities. PPTN determination in rat plasma is necessary to better understand its biological effects. The aim of this study was to develop a sensitive LC-MS/MS method for the determination of PPTN in rat plasma. The performance criteria for linearity, sensitivity, precision, accuracy, recovery, and stability have been assessed and were within the recommended guidelines. The validated method proved to be suitable in a pilot study of PPTN kinetic disposition in rat plasma after a single intraperitoneal dose, and represents an appropriate tool to further pharmacokinetic studies.
Resumo:
The bioassay, first order derivative UV spectrophotometry and chromatographic methods for assaying fluconazole capsules were compared. They have shown great advantages over the earlier published methods. Using the first order derivative, the UV spectrophotometry method does not suffer interference of excipients. Validation parameters such as linearity, precision, accuracy, limit of detection and limit of quantitation were determined. All methods were linear and reliable within acceptable limits for antibiotic pharmaceutical preparations being accurate, precise and reproducible. The application of each method as a routine analysis should be investigated considering cost, simplicity, equipment, solvents, speed, and application to large or small workloads.
Resumo:
A simple, rapid and selective method using high-performance liquid chromatography with ultraviolet detection (267 nm) was applied for the determination of tryptophan in plasma. Separation was carried out on a C18 column (150 x 4.6 mm internal diameter) in 6 min. The mobile phase consisted of 5 mM the sodium acetate and acetonitrile (92:8, v/v). The method was shown to be precise and accurate, and good recovery of analyte was achieved, characterizing the method as efficient and reliable for use in laboratory analysis.
Resumo:
An optical chemical sensor for the determination of nitrite based on incorporating methyltrioctylammonium chloride as an anionic exchanger on the triacetylcellulose polymer has been reported. The response of the sensor is based on the redox reaction between nitrite in aqueous solution and iodide adsorbed on sensing membrane using anion exchange phenomena. The sensing membrane reversibly responses to nitrite ion over the range of 6.52×10-6 - 8.70×10-5 mol L-1 with a detection limit of 6.05×10-7 mol L-1 (0.03 µg mL-1) and response time of 6 min. The relative standard deviation for eight replicate measurements of 8.70×10-6 and 4.34×10-5 mol L-1 of nitrite was 4.4 and 2.5 %, respectively. The sensor was successfully applied for determination of nitrite in food, saliva and water samples.
Resumo:
A selective and accurate stability-indicating gradient reverse phase ultra performance liquid chromatographic method has been developed and validated for the simultaneous determination of nizatidine, methylparaben and propylparaben in pharmaceutical oral liquid formulation. The separation was achieved on Acquity UPLC TM HSS T3 1.8 µm column by using mobile phase containing a gradient mixture of solvent A (0.02 Mol L-1 KH2PO4, pH 7.5) and B (60:40 v/v mixture of methanol and acetonitrile) at flow rate of 0.4 mL min-1. Drug product was exposed to the stress conditions of oxidative, acid, base, hydrolytic, thermal and photolytic degradation. The developed method was validated as per international ICH guidelines with respect to specificity, linearity, accuracy, precision and robustness.
Resumo:
A rapid and sensitive method using high performance liquid chromatography has been developed and validated for the simultaneous determination of non-steroidal anti-inflammatory drugs (NSAIDs) in pharmaceutical formulations and human serum. Six NSAIDs including: naproxen sodium, diclofenac sodium, meloxicam, flurbiprofen, tiaprofenic and mefenamic acid were analyzed simultaneously in presence of ibuprofen as internal standard on Mediterranea C18 (5 µm, 250 x 0.46 mm) column. Mobile phase comprised of methanol: acetonitrile: H2O (60:20:20, v/v; pH 3.35) and pumped at a flow rate of 1 mL min-1 using 265 nm UV detection. The method was linear over a concentration range of 0.25-50 µg mL-1 (r² = 0.9999).
Resumo:
A method using HPLC-UV was developed and validated for the determination of etoposide incorporated into polycaprolactone implants. The method was carried out in isocratic mode using a C18 column (250 x 4.6 mm; 5 µm), at 25 ºC, with acetonitrile and acetic acid 4% (70:30) as mobile phase, a flow rate of 2 mL/min, and UV detection at 285 nm. The method was linear (r² > 0.99) over the range of 5 to 65 µg/mL, precise (RSD < 5%), accurate (recovery of 98.7%), robust, selective regarding excipient of the sample, and had a quantitation limit equal to 1.76 µg/mL. The validated method can be successfully employed for routine quality control analyses.
Resumo:
The purpose of this study was to develop a rapid, simple and sensitive quantitation method for pseudoephedrine (PSE), paracetamol (PAR) and loratadine (LOR) in plasma and pharmaceuticals using liquid chromatography-tandem mass spectrometry with a monolithic column. Separation was achieved using a gradient composition of methanol-0.1% formic acid at a flow rate of 1.0 mL min-1. Mass spectral transitions were recorded in SRM mode. System validation was evaluated for precision, specificity and linearity. Limit of detection for pseudoephedrine, paracetamol, and loratadine were determined to be 3.14, 1.86 and 1.44 ng mL-1, respectively, allowing easy determination in plasma with % recovery of 93.12 to 101.56%.
Resumo:
A furan-triazole derivative has been explored as an ionophore for preparation of a highly selective Pr(III) membrane sensor. The proposed sensor exhibits a Nernstian response for Pr(III) activity over a wide concentration range with a detection limit of 5.2×10-8 M. Its response is independent of pH of the solution in the range 3.0-8.8 and offers the advantages of fast response time. To investigate the analytical applicability of the sensor, it was applied successfully as an indicator electrode in potentiometric titration of Pr(III) solution and also in the direct and indirect determination of trace Pr(III) ions in some samples.
Resumo:
Nuclear magnetic resonance (NMR) is one of the most versatile analytical techniques for chemical, biochemical and medical applications. Despite this great success, NMR is seldom used as a tool in industrial applications. The first application of NMR in flowing samples was published in 1951. However, only in the last ten years Flow NMR has gained momentum and new and potential applications have been proposed. In this review we present the historical evolution of flow or online NMR spectroscopy and imaging, and current developments for use in the automation of industrial processes.
Resumo:
A fast and efficient method has been developed and validated for the determination of fipronil in bovine plasma. Samples were subjected to solid-phase extraction (SPE) followed by reversed phase liquid chromatography (LC) separation, using acetonitrile/water (60:40 v/v) as the mobile phase with a flow rate of 1.0 mL/min and ultraviolet (UV) detection at 210 nm. Ethiprole was used as the internal standard (IS). The method was found to be linear over the range 5-500 ng/mL (r = 0.999). The limit of quantitation (LOQ) was validated at 5 ng/mL. The method was successfully applied to monitor plasma concentrations following subcutaneous administration of fipronil in cattle.
Resumo:
A sensitive, accurate and simple method using HPLC-MS/MS was developed and validated for levodopa quantitation in human plasma. Analysis was achieved on a pursuit® C18 analytical column (5 µm; 150 x 4.6 mm i.d.) using a mobile phase (methanol and water , 90:10, v/v) containing formic acid 0.5% v/v, after extracting the samples using a simple protein plasma precipitation with perchloric acid. The developed method was validated in accordance with ANVISA guidelines and was successfully applied to a bioequivalence study in 60 healthy volunteers demonstrating the feasibility and reliability of the proposed method.