996 resultados para marginal density


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Submitted by 阎军 (yanj@red.semi.ac.cn) on 2010-05-07T13:34:11Z No. of bitstreams: 1 Origin of antiferromagnetism in CoO A density functional theory study.pdf: 263570 bytes, checksum: 9128a541375fb9fe9f761fc02ece4210 (MD5)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The alternate combinational approach of genetic algorithm and neural network (AGANN) has been presented to correct the systematic error of the density functional theory (DFT) calculation. It treats the DFT as a black box and models the error through external statistical information. As a demonstration, the AGANN method has been applied in the correction of the lattice energies from the DFT calculation for 72 metal halides and hydrides. Through the AGANN correction, the mean absolute value of the relative errors of the calculated lattice energies to the experimental values decreases from 4.93% to 1.20% in the testing set. For comparison, the neural network approach reduces the mean value to 2.56%. And for the common combinational approach of genetic algorithm and neural network, the value drops to 2.15%. The multiple linear regression method almost has no correction effect here.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Effects of interface roughness and dislocation density on the electroluminescence (EL) intensity of InGaN multiple quantum wells (MQWs) are investigated. It is found that the EL intensity increases with the number of satellite peaks in the x-ray diffraction experiments of InGaN MQW samples. It is indicated that the rough interface will lead the reduction of EL intensity of InGaN MQW samples. It is also found that the EL intensity increases with the decrease of dislocation density which is characterized by the x-ray diffraction measurements. It is suggested that the EL intensity of InGaN MQWs can be improved by decreasing the interface roughness and dislocation density.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coherence evolution and echo effect of an electron spin, which is coupled inhomogeneously to an interacting one-dimensional finite spin bath via hyperfine-type interaction, are studied using the adaptive time-dependent density-matrix renormalization group method. It is found that the interplay of the coupling inhomogeneity and the transverse intrabath interactions results in two qualitatively different coherence evolutions, namely, a coherence-preserving evolution characterized by periodic oscillation and a complete decoherence evolution. Correspondingly, the echo effects induced by an electron-spin flip at time tau exhibit stable recoherence pulse sequence for the periodic evolution and a single peak at root 2 tau for the decoherence evolution, respectively. With the diagonal intrabath interaction included, the specific feature of the periodic regime is kept, while the root 2 tau-type echo effect in the decoherence regime is significantly affected. To render the experimental verifications possible, the Hahn echo envelope as a function of tau is calculated, which eliminates the inhomogeneous broadening effect and serves for the identification of the different status of the dynamic coherence evolution, periodic versus decoherence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By utilizing time-resolved Kerr rotation techniques, we have investigated the spin dynamics of a high-mobility low density two-dimensional electron gas in a GaAs/Al0.35Ga0.65As heterostructure in the dependence on temperature from 1.5 to 30 K. It is found that the spin relaxation/dephasing time under a magnetic field of 0.5 T exhibits a maximum of 3.12 ns around 14 K, which is superimposed on an increasing background with rising temperature. The appearance of the maximum is ascribed to that at the temperature where the crossover from the degenerate to the nondegenerate regime takes place, electron-electron Coulomb scattering becomes strongest, and thus inhomogeneous precession broadening due to the D'yakonov-Perel' mechanism becomes weakest. These results agree with the recent theoretical predictions [J. Zhou et al., Phys. Rev. B 15, 045305 (2007)], which verify the importance of electron-electron Coulomb scattering to electron spin relaxation/dephasing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hexagonal nanopillars with a single InGaAs/GaAs quantum well (QW) were fabricated on a GaAs (111) B substrate by selective-area metal-organic vapor phase epitaxy. The standard deviations in diameter and height of the nanopillars are about 2% and 5%, respectively. Zincblende structure and rotation twins were identified in both the GaAs and the InGaAs layers by electron diffraction. The excitation-power-density-dependent micro-photoluminescence (mu-PL) of the nanopillars was measured at 4.2, 50, 100 and 150 K. It was shown that, with increasing excitation power density, the mu-PL peak's positions shift to a higher energy, and their intensity and width increase, which were rationalized using a model that includes the effects of piezoelectricity, photon-screening and band-filling. It was also revealed that the rotation twins significantly reduce the diffusion length of the carriers in the nanopillars, compared to that in the regular semiconductors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Very low threshold current density InGaAs/ GaAs quantum well laser diodes grown by molecular beam epitaxy on InGaAs metamorphic buffers are reported. The lasing wavelength of the ridge waveguide laser diode with cavity length of 1200 mm is centred at 1337.2 nm; the threshold current density is 205 A/cm(2) at room temperature under continuous-wave operation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We develop a modified two-step method of growing high-density and narrow size-distribution InAs/GaAs quantum dots (QDs) by molecular beam epitaxy. In the first step, high-density small InAs QDs are formed by optimizing the continuous deposition amount. In the second step, deposition is carried out with a long growth interruption for every 0.1 InAs monolayer. Atomic force microscope images show that the high-density (similar to 5.9x 10(10) CM-2) good size-uniformity InAs QDs are achieved. The strong intensity and narrow linewidth (27.7 meV) of the photoluminescence spectrum show that the QDs grown in this two-step method have a good optical quality.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, combining low deposition rate with proper growth temperature, we have developed a way to prepare very low-density quantum dots (QDs) suited for the study of single OD properties without resorting to submicron lithography. Experiment results demonstrate that InAs desorption is significant during growing the low density QDs. Ripening of InAs QDs is clearly observed during the post-growth annealing. Photoluminescence spectroscopy reveals that the emission wavelength of low density InAs QDs arrives at 1332.4 nm with a GaAs capping layer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on time-resolved Kerr rotation measurements of spin coherence of electrons in the first excited subband of a high-mobility low-density two-dimensional electron system in a GaAs/Al0.35Ga0.65As heterostructure. While the transverse spin lifetime (T-2(*)) of electrons decreases monotonically with increasing magnetic field, it has a nonmonotonic dependence on the temperature and reaches a peak value of 596 ps at 36 K, indicating the effect of intersubband electron-electron scattering on the electron-spin relaxation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The intrinsic large electronegativity of O 2p character of the valence-band maximum (VBM) of ZnO renders it extremely difficult to be doped p type. We show from density functional calculation that such VBM characteristic can be altered by compensated donor-acceptor pairs, thus improve the p-type dopability. By incorporating (Ti+C) or (Zr+C) into ZnO simultaneously, a fully occupied impurity band that has the C 2p character is created above the VBM of host ZnO. Subsequent doping by N in ZnO: (Ti+C) and ZnO: (Zr+C) lead to the acceptor ionization energies of 0.18 and 0.13 eV, respectively, which is about 200 meV lower than it is in pure ZnO.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The atomistic pseudopotential quantum mechanical calculations are used to study the transport in million atom nanosized metal-oxide-semiconductor field-effect transistors. In the charge self-consistent calculation, the quantum mechanical eigenstates of closed systems instead of scattering states of open systems are calculated. The question of how to use these eigenstates to simulate a nonequilibrium system, and how to calculate the electric currents, is addressed. Two methods to occupy the electron eigenstates to yield the charge density in a nonequilibrium condition are tested and compared. One is a partition method and another is a quasi-Fermi level method. Two methods are also used to evaluate the current: one uses the ballistic and tunneling current approximation, another uses the drift-diffusion method. (C) 2009 American Institute of Physics. [doi:10.1063/1.3248262]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We obtain low-density charged InAs quantum dots with an emission wavelength below 1 mu m using a low InAs growth rate. The quantum dots have a bimodal size distribution with an emission wavelength of around 1340 nm and 1000 nm, respectively. We observe the photoluminescence of the singly charged exciton in the modulation doped quantum dots in 77 K.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Equilibrium geometries, stabilities, and electronic properties of TinAl (n=1-13) clusters have been studied by using density-functional theory with local spin density approximation and generalized gradient approximation. The ground-state structures of TinAl clusters have been obtained. The resulting geometries show that the aluminum atom remains on the surface of clusters for n<9, but is slowly getting trapped beyond n=9, meanwhile, the Al atom exhibits a valent transition from monovalent to trivalent. The geometric effects and electronic effects clearly demonstrate the Ti4Al cluster to be endowed with special stability. The studies on the bonds indicate the change from ionic to metalliclike. (C) 2004 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Variable-temperature photoluminescence (PL) spectra of Si-doped self-assembled InGaAs quantum dots (QDs) with and without GaAs cap layers were measured. Narrow and strong emission peak at 1075 nm and broad and weak peak at 1310 nm were observed for the buried and surface QDs at low temperature, respectively. As large as 210 meV redshift of the PL peak of the surface QDs with respect to that of the buried QDs is mainly due to the change of the strain around QDs before and after growth of the GaAs cap layer. Using the developed localized-state luminescence model, we quantitatively calculate the temperature dependence of PL peaks and integrated intensities of the two samples. The results reveal that there exists a large difference in microscopic mechanisms of PL thermal quenching between two samples. (c) 2005 American Institute of Physics.