997 resultados para Gallium Arsenide (GaAs)
Resumo:
We demonstrate that the carrier capture and relaxation processes in InAs/GaAs quantum dots can be detected by a simple degenerate pump-probe technique. We have observed a rising process in the transient reflectivity, following the initial fast relaxation in a GaAs matrix, and assigned this rising process to the carrier capture from the GaAs barriers to the InAs layers. The assignment was modeled using the Kramers-Kronig relations. The capture time was found to depend strongly on the InAs layer thickness as well as on the excitation density and photon energy. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
A novel composite InxGa1-xAs/GaAs/GaAs/AlxGa1-xAs multiple quantum well material with different well widths was studied as a new kind of photoelectrode in a photoelectrochemical cell. The photocurrent spectrum and photocurrent-electrode potential curve were measured in ferrocene nonaqueous solution. Pronounced quantization effects and strong exciton absorption were observed in the photocurrent spectrum. The effects of surface states and interfacial states on the photocurrent-electrode potential curve are discussed. (C) 2000 Elsevier Science S.A. All rights reserved.
Resumo:
The binding energy of an exciton bound to an ionized donor impurity (D+,X) located st the center or the edge in GaAs-AlxGa1-xAs quantum wells is calculated variationally for the well width from 10 to 300 Angstrom by using a two-parameter wave function, The theoretical results are discussed and compared with the previous experimental results.
Resumo:
The hybrid integrated photonic switch and not logic gate based on the integration of a GaAs VCSEL (Vertical Cavity Surface Emitting Lasers) and a MISS (Metal-Insulator-Semiconductor Switches) device are reported. The GaAs VCSEL is fabricated by selective etching and selective oxidation. The Ultra-Thin semi-Insulating layer (UTI) of the GaAs MISS is formed by using oxidation of A1As that is grown by MBE. The accurate control of UTI and the processing compatibility between VCSEL and MISS are solved by this procedure. Ifa VCSEL is connected in series with a MISS, the integrated device can be used as a photonic switch, or a light amplifier. A low switching power (10 mu W) and a good on-off ratio (17 dB contrast) have been achieved. If they are connected in parallel, they perform a photonic NOT gate operation.
Resumo:
We investigated the photoluminescence (PL) of self-assembled In0.55Al0.45As/Al0.5Ga0.5As quantum dots (QDs) grown on (311)A GaAs substrate. The PL peak at 10 K shifts to lower energy by about 30 meV when the excitation power decreases by two orders of magnitude. It has a red-shift under pressure, that is the character of X-like transition. Moreover, its peak energy is smaller than the indirect gap of bulk Al0.5Ga0.5As and In0.55Al0.45As. We then attribute that peak to the type-II transition between electrons in X valley of Al0.5Ga0.5As and heavy holes in In0.55Al0.45As QDs. A new peak appears at the higher energy when temperature is increased above 70 K. It shifts to higher energy with increasing pressure, corresponding to the transition from conduction Gamma band to valence band in QDs. The measurements demonstrate that our In0.55Al0.45As/Al0.5Ga0.5As quantum dots are type-II QDs with X-like conduction-band minimum. To interpret the second X-related peak emerged under pressure, we discuss the X-valley split in QDs briefly. (C) 2000 American Institute of Physics. [S0003-6951(00)04622-2].
Resumo:
We have studied the optical and structural properties of InAs/GaAs QDs covered by InxGa1-xAs (0 less than or equal to x less than or equal to 0.3) layer using transmission electron microscopy, photoluminescence (PL) spectra and atomic force microscopy. We find that the strain reduces in the growth direction of InAs islands covered by InGaAs instead of GaAs layer. Significant redshift of PL peak energy and narrowing of PL linewidth are observed for the InAs QDs covered by 3 nm thick InGaAs layer. In addition, atomic force microscopy measurements indicate that the InGaAs islands will nucleate on top of InAs quantum dots, when 3 nm In0.3Ga0.7As overgrowth layer is deposited. This result can well explain the PL intensify degradation and linewidth increment of quantum dots with a higher In-mole-fraction InGaAs layer. The energy gap change of InAs QDs covered by InGaAs may be explained in terms of reducing strain, suppressing compositional mixing and increasing island height. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
The optical properties of cubic GaN films have been investigated in the temperature range of 10-300 K. Five peaks were observed at 10 K. From the dependence of photoluminescence emissions on the temperature and excitation intensity, we have assigned two of the five peaks (2.926 and 2.821 eV) to donor-acceptor pair (DAP) transitions. Furthermore, these two peaks were found to be related to a common shallow donor involved in the peak position previously reported at 3.150 eV. The intensities of DAP transitions were much weaker than that of excitonic emission even at low temperature, indicating a relatively high purity of our samples. (C) 2000 American Institute of Physics. [S0003-6951(00)00921-9].
Resumo:
We have investigated the temperature dependence of the photoluminescence (PL) spectrum of self-organized InAs/GaAs quantum dots. A distinctive double-peak feature of the PL spectra from quantum dots has been observed, and a bimodal distribution of dot sizes has also been confirmed by scanning tunneling microscopy image for uncapped sample. The power-dependent PL study demonstrates that the distinctive PL emission peaks are associated with the ground-state emission of islands in different size branches. The temperature-dependent PL study shows that the PL quenching temperature for different dot families is different. Due to lacking of the couple between quantum dots, an unusual temperature dependence of the linewidth and peak energy of the dot ensemble photoluminescence has not been observed. In addition, we have tuned the emission wavelength of InAs QDs to 1.3 mu m at room temperature.
Resumo:
We have investigated the interband electron transitions in a GaNAs/GaAs single quantum well (QW) by photoluminescence and absorption spectra. The experimental results show that the dominant photoluminescence at low temperature and high excitation intensity originates from transitions within the GaNAs layer. The interband transition energy for QWs with different well widths can be well fitted if a type-II band line up of GaNAs/GaAs QWs is assumed. (C) 2000 American Institute of Physics. [S0003-6951(00)03220-4].
Resumo:
In this letter, we investigated the effect of the buffer layer growth conditions on the secondary hexagonal phase content in cubic GaN films on GaAs(0 0 1) substrate. The reflection high-energy electron diffraction (RHEED) pattern of the low-temperature GaN buffer layers shows that both the deposition temperature and time are important in obtaining a smooth surface. Four-circle X-ray double-crystal diffraction (XRDCD) reciprocal space mapping was used to study the hexagonal phase inclusions in the cubic GaN (c-GaN) films grown on the buffer layers. The calculation of the volume contents of the hexagonal phase shows that higher temperature and longer time deposition of the buffer layer is not preferable for growing pure c-GaN film. Under optimized condition, 47 meV FWHM of near band gap emission of the c-GaN film was achieved. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
We report on the photoluminescence in directly Si- and Be-doped self-organized InAs/GaAs quantum dots (QDs). When the doping level is low, a decrease in linewidth is observed. However, it will decrease the uniformity and photoluminescence peak intensity of QDs when the doping level is high. We relate this phenomenon to a model that takes the Si or Be atoms as the nucleation centers for the formation of QDs. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
We have studied the effect of rapid thermal annealing (RTA) on highly strained InGaAs/GaAs quantum wells by using photoluminescence (PL) and double-crystal X-ray diffraction (DCXRD) measurements. It is found that a distinct additional PL emission peak can be observed for the annealed samples. This PL emission possesses features similar to the PL emission from InGaAs/GaAs quantum dots (QDs) with the same indium content. It is proposed that this emission stems from QDs, which were formed during the annealing process. This formation is attributed to the favorable diffusion due to the inhomogeneous strain distribution in the InGaAs layer intersurface. The DCXRD measurements also confirm that the dominant relaxation is strain enhanced diffusion under the low annealing temperatures. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
Postgrowth rapid thermal annealing was performed on InGaAs/GaAs quantum dots grown by molecular beam epitaxy. The blue shift of the emission peak and the narrowing of the luminescence line width are observed at lower annealing temperature. However, when the annealing temperature is increased to 850 degrees C, the emission line width becomes larger. The TEM image of this sample shows that the surface becomes rough, and some large clusters are formed, which is due to the interdiffusion of In, Ga atoms at the InGaAs/GaAs interface and to the strain relaxation. The material is found to degrade dramatically when the annealing temperature is further increased to 900 degrees C, while emission from quantum dots can still be detected, along with the appearance of the emission from excited state. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
Cubic InxGa1-xN films were successfully grown on GaAs(001) substrates by metalorganic chemical-vapor deposition. The values of x content ranging from 0.10 to 0.24 obtained at different growth conditions were measured by double-crystal x-ray diffraction (XRD). The perpendicular and parallel elastic strain of the In0.2Ga0.8N layer, epsilon(perpendicular to)=0.4% and epsilon(parallel to)=-0.4% for GaN and epsilon(perpendicular to)=0.37% and epsilon(parallel to)=-0.37% for InGaN, respectively, were derived using the XRD measurements. The inhomogeneous strain and the average grain size of the In0.2Ga0.8N/GaN films were also studied by XRD. Photoluminescence spectra were used to measure the optical characterization of the InxGa1-xN thin films with different In composition, and the near-band-edge emission dependence of cubic InxGa1-xN on the x value is nearly linear with In content x less than or equal to 0.24. (C) 2000 American Institute of Physics. [S0021-8979(00)03908-6].
Resumo:
The optical properties of InAs quantum dots in n-i-p-i GaAs superlattices are investigated by photoluminescence (PL) characterization. We have observed an anomalously large blueshift of the PL peak and increase of the PL linewidth with increasing excitation intensity, much smaller PL intensity decrease, and faster PL peak redshift with increasing temperature as compared to conventional InAs quantum dots embedded in intrinsic GaAs barriers. The observed phenomena can all be attributed to the filling effects of the spatially separated photogenerated carriers. (C) 2000 American Institute of Physics. [S0003-6951(00)03515-4].