938 resultados para fabrication of GaN epitaxial films
Resumo:
A new method for introducing enzymes into cellulosic matrixes which can be formed into membranes, films, or beads has been developed using a cellulose-in-ionic-liquid dissolution and regeneration process. Initial results on the formation of thin cellulose films incorporating dispersed laccase indicate that active enzyme-encapsulated films can be prepared using this methodology and that precoating the enzyme with a second. hydrophobic ionic liquid prior to dispersion in the cellulose/ionic liquid solution can provide an increase in enzyme activity relative to that of untreated films, presumably by providing a stabilizing microenvironment for the enzyme.
Resumo:
A new method of sol-gel polymer template synthesis of mesoporous catalytic thin films has been proposed which allows controlling the chemical nature of the film, the porosity, thickness and loading with an active species. The mesoporous films with a long-order structure can be obtained in a narrow range of surfactant-to-metal precursor molar ratios from 0.006 to 0.009. The catalytic film thickness was varied from 300 to 1000 nm while providing a uniform catalyst distribution with a desired catalyst loading (1 wt. % Au nanoparticles) throughout the film. The films were characterized by TEM, SEM, ethanol adsorption and contact angle measurements. The calcination of the as-synthesized films at 573 K reduced Ti4+ sites to Ti3+. A 300 nm thick Au-containing film showed an initial TOF of 1.4 s(-1) and a selectivity towards unsaturated alcohols as high as 90% in the hydrogenation of citral. Thicker films demonstrated a high selectivity towards the saturated aldehyde (above 55%) and a lower intrinsic catalytic activity (initial TOF of 0.7-0.9 s(-1)) in the absence of internal diffusion limitations.
The effect of the stretching of PLA extruded films on their crystallinity and gas barrier properties
Resumo:
The effect of Al incorporation and pH adjustment during hydrolysis of the silica precursor on the thermal and structural stability of ordered microporous silica films with a 2D structure is presented. The structural stability of the films was determined from a combination of LA XRD/TEM data with porosity data obtained from ethanol adsorption isotherms. Thermogravimetric analysis and MR data were used to determine the template removal and the thermal stability. Stability of aluminium incorporated silica films has further been examined in several organic solvents with different polarity. A solvent with a higher polarity interacts more strongly with the films; the long-order structure disappeared after exposure to polar solvents. After exposure to non-polar solvents, the pore size uniformity was retained after 48 h. The samples with an Al/Si ratio of 0.007 showed the smallest d-spacing shift after exposure to hexane. The stability was further tested in the hydrogenation of phenylacetylene performed in a batch reactor over 1 wt.% Pd/Si(Al)O-2/Si (Al/Si = 0.007) films at 30 degrees C and 10 bar H-2 with hexane as solvent. No deactivation was observed in two subsequent hydrogenation runs. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
An intelligent ink, previously shown to be capable of rapidly assessing photocatalytic activity, was simply applied via a felt-pen onto a commercially available piece of Activ (TM) self-cleaning glass. The ink, comprising of redox dye resazurin and the sacrificial electron donor glycerol within an aqueous hydroxy ethyl cellulose (HEC) polymer media, was photocatalytically degraded in a two-step process. The key initial stage was the photo-reductive conversion of resazurin to resorufin, whereby a colour change from blue to pink occurred. The latter stage was the subsequent photo-reduction of the resorufin, where a slower change from pink to colourless was seen. Red and green components of red-green-blue colour extracted from flat-bed scanner digital images of resazurin ink coated photocatalytic films at intervals during the photocatalysis reaction were inversely proportional to the changes seen via UV-visible absorption spectroscopy and indicative of reaction kinetics. A 3 x 3 grid of intelligent ink was drawn onto a piece of Activ (TM) and a glass blank. The photocatalysis reaction was monitored solely by flat-bed digital scanning. Red-green-blue values of respective positions on the grid were extracted using a custom-built program entitled RGB Extractor (c). The program was capable of extracting a number of 5 x 5 pixel averages of red-green-blue components simultaneously. Allocation of merely three coordinates allowed for the automatic generation of a grid, with scroll-bars controlling the number of positions to be extracted on the grid formed. No significant change in red and green components for any position on the glass blank was observed; however, the Activ (TM) film displayed a homogenous photo-reduction of the dye, reaching maxima in red and minima in green components in 23 +/- 3 and 14 +/- 2 min, respectively. A compositionally graded N-doped titania film synthesised in house via a combinatorial APCVD reaction was also photocatalytically tested by this method where 247 positions on a 13 x 19 grid were simultaneously analysed. The dramatic variation in photocatalysis observed was rapidly quantified for all positions (2-3 hours) allowing for correlations to be made between thicknesses and N : Ti% compositions attained from Swanepoel and WDX analysis, respectively. N incorporation within this system was found to be detrimental to film activity for the photocatalysis reaction of intelligent ink under 365 nm light.
Resumo:
An indicator ink based on the redox dye 2,6-dichloroindophenol ( DCIP) is described, which allows the rapid assessment of the activity of thin, commercial photocatalytic films, such as Activ. The ink works via a photoreductive mechanism, DCIP being reduced to dihydro-DCIP within ca. 7.5 minutes exposure to UVA irradiation of moderate intensity ( ca. 4.8mW cm(-2)). The kinetics of photoreduction are found to be independent of the level of dye present in the ink formulation, but are highly sensitive to the level of glycerol. This latter observation may be associated with a solvatochromic effect, whereby the microenvironment in which the dye finds itself and, as a consequence, its reactivity is altered significantly by small changes in the glycerol content. The kinetics of photoreduction also appear linearly dependent on the UVA light intensity with an observed quantum efficiency of ca. 1.8 x 10(-3). Copyright (C) 2008.
Resumo:
An ink, comprising the redox dye resazurin (Rz) and the sacrificial electron donor glycerol, is shown to be capable of the rapid assessment of the photocatalytic activities of self-cleaning films. In the key initial stage of photocatalysis the ink changes from blue to pink. Prolonged irradiation bleaches the ink and eventually mineralizes it. The kinetics of the initial photoinduced color change is studied as a function of UV irradiance, [glycerol], [Rz], and temperature. The results reveal an apparent approximate quantum yield of 3.5 x 10(-3) and an initial rate, r(i), which increases with [glycerol] and decreases with [Rz]. It is proposed that the reduction of Rz, dispersed throughout the thick (ca. 590 nm) indicator film, may take place either via the diffusion of the dye molecules in the ink film to the surface of the underlying semiconductor layer and their subsequent reaction with photogenerated electrons and/or via the diffusion of alpha-hydroxyalkyl radicals, produced by the oxidation of the glycerol by photogenerated holes, or hydroxy radicals, away from the surface of the semiconductor into the ink film and their subsequent reaction with the dye molecules therein. The decrease in r(i) with [Rz] appears to be due to dimer formation, with the latter impeding the reduction process. The activation energy for the initial color-change process is low, ca. 9.1 +/- 0.1 kJ mol(-1) and not unlike many other photocatalytic processes. The initial rate of dye reduction appears to be directly related to the rate of destruction of stearic acid. The ink can be applied by spin-coating, stamping, or writing, using a felt-tip pen. The efficacy of such an ink for assessing the photocatalytic activity of any photocatalytic film, including those employed on commercial self-cleaning glasses, tiles, and paving stones, is discussed briefly.
Resumo:
High-quality luminescent thin films of strontium sulphide (SrS) with excellent stoichiometry have been grown by pulsed-laser deposition. The crystallinity, stoichiometry and cathodoluminescence (CL) have been investigated for the films deposited onto two differently coated glass substrates. Furthermore the importance of post-deposition annealing has been studied. SrS thin films grown at 450 degrees C onto glass substrates coated with tin-doped indium oxide show good crystallinity, with a preferred orientation along the (200) axis. Cerium-doped SrS (SrS:Ce) gives a strong blue CL output at 400 nm. Energy-dispersive X-ray spectroscopy shows that the films are stoichiometric and that the stoichiometry is controllable by varying deposition parameters.