996 resultados para Supercritical Co2


Relevância:

20.00% 20.00%

Publicador:

Resumo:

[1] The alpine meadow ecosystem on the Qinghai-Tibetan Plateau may play a significant role in the regional carbon cycle. To assess the CO2 flux and its relationship to environmental controls in the ecosystem, eddy covariance of CO2, H2O, and energy fluxes was measured with an open-path system in an alpine meadow on the plateau at an elevation of 3,250 m. Net ecosystem CO2 influx (Fc) averaged 8.8 g m(-2) day(-1) during the period from August 9 to 31, 2001, with a maximum of 15.9 g m(-2) day(-1) and a minimum of 2.3 g m(-2) day(-1). Daytime Fc averaged 16.7 g m(-2) day(-1) and ranged from 10.4 g m(-2) day(-1) to 21.7 g m(-2) day(-1) during the study period. For the same photosynthetic photon flux density (PPFD), gross CO2 uptake (Gc) was significantly higher on cloudy days than on clear days. However, mean daily Gc was higher on clear days than on cloudy days. With high PPFD, Fc decreased as air temperature increased from 10degreesC to 23degreesC. The greater the difference between daytime and nighttime air temperatures, the more the sink was strengthened. Daytime average water use efficiency of the ecosystem (WUEe) was 8.7 mg (CO2)(g H2O)(-1); WUEe values ranged from 5.8 to 15.3 mg (CO2)(g H2O)(-1). WUEe increased with the decrease in vapor pressure deficit. Daily albedo averaged 0.20, ranging from 0.19 to 0.22 during the study period, and was negatively correlated with daily Fc. Our measurements provided some of the first evidence on CO2 exchange for a temperate alpine meadow ecosystem on the Qinghai-Tibetan Plateau, which is necessary for assessing the carbon budget and carbon cycle processes for temperate grassland ecosystems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There has been a growing concern about the use of fossil fuels and its adverse effects on the atmospheric greenhouse and ecological environment. A reduction in the release rate of CO2 into the atmosphere poses a major challenge to the land ecology of China. The most promising way of achieving CO2 reduction is to dispose of CO2 in deep saline aquifers. Deep aquifers have a large potential for CO2 sequestration in geological medium in terms of volume and duration. Through the numerical simulation of multiphase flow in a porous media, the transformation and motion of CO2 in saline aquifers has been implemented under various temperature and hydrostatic pressure conditions, which plays an important role to the assessment of the reliability and safety of CO2 geological storage. As expected, the calculated results can provide meaningful and scientific information for management purposes. The key problem to the numerical simulation of multiphase flow in a porous media is to accurately capture the mass interface and to deal with the geological heterogeneity. In this study, the updated CE/SE (Space and time conservation element and solution element) method has been proposed, and the Hybrid Particle Level Set method (HPLS) has extended for multiphase flows in porous medium, which can accurately trace the transformation of the mass interface. The benchmark problems have been applied to evaluate and validate the proposed method. In this study, the reliability of CO2 storage in saline aquifers in Daqingzi oil field in Sunlong basin has been discussed. The simulation code developed in this study takes into account the state for CO2 covering the triple point temperature and pressure to the supercritical region. The geological heterogeneity has been implemented, using the well known geostatistical model (GSLIB) on the base of the hard data. The 2D and 3D model have been set up to simulate the CO2 multiphase flow in the porous saline aquifer, applying the CE/SE method and the HPLS method .The main contents and results are summarized as followings. (1) The 2D CE/SE method with first and second –order accuracy has been extended to simulate the multiphase flow in porous medium, which takes into account the contribution of source and sink in the momentum equation. The 3D CE/SE method with the first accuracy has been deduced. The accuracy and efficiency of the proposed CE/SE method have been investigated, using the benchmark problems. (2) The hybrid particle level set method has been made appropriate and extended for capturing the mass interface of multiphase flows in porous media, and the numerical method for level set function calculated has been formulated. (3) The closed equations for multiphase flow in porous medium has been developed, adept to both the Darcy flow and non-Darcy flow, getting over the limitation of Reynolds number to the calculation. It is found that Darcy number has a decisive influence on pressure as well as velocity given the Darcy number. (4) The new Euler scheme for numerical simulations of multiphase flows in porous medium has been proposed, which is efficient and can accurately capture the mass interface. The artificial compressibility method has been used to couple the velocities and pressure. It is found that the Darcy number has determinant effects on the numerical convergence and stability. In terms of the different Darcy numbers, the coefficient of artificial compressibility and the time step have been obtained. (5) The time scale of the critical instability for critical CO2 in the saline aquifer has been found, which is comparable with that of completely CO2 dissolved saline aquifer. (6) The concept model for CO2 multiphase flows in the saline aquifer has been configured, based on the temperature, pressure, porosity as well as permeability of the field site .Numerical simulation of CO2 hydrodynamic trapping in saline aquifers has been performed, applying the proposed CE/SE method. The state for CO2 has been employed to take into account realistic reservoir conditions for CO2 geological sequestration. The geological heterogeneity has been sufficiently treated , using the geostatistical model. (7) It is found that the Rayleigh-Taylor instability phenomenon, which is associated with the penetration of saline fluid into CO2 fluid in the direction of gravity, has been observed in CO2 multiphase flows in the saline aquifer. Development of a mushroom-type spike is a strong indication of the formation of Kelvin-Helmholtz instability due to the developed short wavelength perturbations present along the interface and parallel to the bulk flow. Additional key findings: the geological heterogeneity can distort the flow convection. The ascending of CO2 can induce the persistent flow cycling effects. The results show that boundary conditions of the field site have determinant effects on the transformation and motion of CO2 in saline aquifers. It is confirmed that the proposed method and numerical model has the reliability to simulate the process of the hydrodynamic trapping, which is the controlling mechanism for the initial period of CO2 storage at time scale of 100 years.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

关于全球CO2汇的位置、大小、变化和机制目前仍不确定, 还存有争议. 在理论计算和野外观测数据证明的基础上发现, 可能存在一种由全球水循环产生的重要的CO2汇(以溶解无机碳-DIC的形式). 这个汇达到0.8013 Pg C/a(约占人类活动排放CO2总量的10.1%, 或占所谓的遗漏CO2汇的28.6%), 它是由水对CO2的溶解吸收形成的, 并随着碳酸盐的溶解及水生植物光合作用对CO2的消耗的增加而显著增加. 这部分汇中有0.5188 Pg C/a通过海上降水(0.2748 Pg C/a)和陆地河流(0.244 Pg C/a)进入海洋, 有0.158 Pg C/a再次释放进入大气, 还有0.1245 Pg C/a储存在陆地水生生态系统中. 因此, 净沉降是0.6433 Pg C/a. 随着全球变暖引起的全球水循环的加强、CO2和大气圈中碳酸盐粉尘的增加, 还有造林地区的增多(会引起土壤CO2的增加进而导致水中DIC浓度的增大), 这部分汇也可能增加.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

超临界CO2流体与技术配合相结合开辟了重金属萃取的新途径。本文介绍了超临界CO2流体萃取重金属的研究现状,总结了影响萃取的因素,并对未来的发展趋势作了展望。

Relevância:

20.00% 20.00%

Publicador:

Resumo:

认识不同条件下岩溶水释放或吸收CO2 的反应过程是研究碳酸盐岩对碳循环响应的前提和基础。本文从吉布斯自由能的热力学原理出发,对全球不同岩溶地区162 组岩溶水(河水、溪水、湖水等) 进行了热力学研究,结果显示:1) 河水、溪水、湖水和洞穴滴水等岩溶水所处的环境因方解石矿物沉积而释放CO2 成为大气CO2 一个潜在的源;2) 地下水在所处的环境下由于方解石的溶解而吸收CO2 ,成为大气CO2 一个潜在的汇;3) 少数出露点的泉水所处的环境既可发生方解石的溶解而吸收CO2 ,成为大气CO2 的潜在汇,也可发生方解石的沉积而释放CO2 ,成为大气CO2 的潜在源;4) 在洪水期,泉水的水化学特征变化并未导致对大气CO2 潜在贡献在源汇之间的跨跃性转变。162 组岩溶水数据中,所有河水与溪水皆无一例外地在释放CO2 。结果表明,从吉布斯自由能的热力学原理出发,研究岩溶水系统对大气CO2 潜在源汇的贡献,没有条件约束,是一种较好的途径。

Relevância:

20.00% 20.00%

Publicador:

Resumo:

本文主要是研究超临界CO2萃取小茴香精油的GC-MS成分,并将其与水蒸汽蒸馏产物及索氏提取产物相对比。分析结果表明:超临界CO2萃取精油与水蒸汽蒸馏提取物、索氏提取物的主要差异在于脂肪酸的含量。超临界CO2萃取小茴香精油的主要成分为大茴香脑和脂肪酸,而水蒸汽蒸馏及索氏提取物的主要成分为大茴香脑。

Relevância:

20.00% 20.00%

Publicador:

Resumo:

采用超临界CO2萃取法提取九叶青花椒和大红袍花椒挥发油,以气相色谱-质谱仪对其化学成分进行检测,用色谱峰面积归一化法确定各化学成分的相对含量,评香师对花椒挥发油的香气进行评价。结果表明,超临界萃取的九叶青花椒挥发油得率为7%,鉴定出63个化合物,属青香型花椒油;超临界萃取的大红袍花椒挥发油得率为4%,鉴定出80个化合物,属浓香型花椒油;两种花椒挥发油的化学成分含量和香气有明显差异,但都保留了各自品种的天然香气特征.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

采用超临界CO2萃取破壁灵芝孢子,萃取条件22MPa,40℃,将所得的孢子油,经GC/MS定性和定量分析,共检出18种脂肪酸成分,其中亚油酸和油酸占62.45%,不饱和脂肪酸占68.42%。

Relevância:

20.00% 20.00%

Publicador:

Resumo:

我国南方岩溶区与北方黄土区都是巨大的碳库。碳酸盐的溶蚀及再结晶是两个碳库与大气CO2交换的重要过程;碳的区域平衡是评价化学风化消耗或逸散CO2的基础,岩溶区与黄土区在地球化学风化的环境背景。溶蚀过程,产物运移和归宿等差异很大。黄土区化学风化消耗大气CO2通量较岩溶区小。目前评价两类地区土壤与大气CO2的源汇关系尚不成熟,需要定量认识土壤CO2与下伏碳酸盐岩溶蚀或与下伏黄土次生碳酸盐化作用。

Relevância:

20.00% 20.00%

Publicador:

Resumo:

国家自然科学基金项目(批准号:49903007和40073032)和中国科学院知识创新工程项目(批准号:KZCX2—105)资助

Relevância:

20.00% 20.00%

Publicador:

Resumo:

应用超临界CO2 萃取技术从印楝种子中萃取印楝素,研究了萃取温度、压力和夹带剂对印楝素萃取效果的影响。当萃取温度为35 ℃、压力为15 MPa、甲醇用量为CO2 体积的3 %时,可将印楝种子中90 %以上的印楝素A 萃取出来,所得产品印楝素A 的质量分数为2013 %。

Relevância:

20.00% 20.00%

Publicador:

Resumo:

应用超临界CO2萃取同一品种生姜的带皮姜、去皮姜、姜皮姜油,采用GC-MS联用技术分离鉴定其中的化学组成,并计算其相对含量。结果表明不同部位姜油化学成分含量存在差异。

Relevância:

20.00% 20.00%

Publicador:

Resumo:

介绍了大蒜的重要用途及大蒜油的几种主要提取技术,综述了超临界CO2 萃取技术在大蒜深加工中大蒜油提取、大蒜脱臭及生物活性成分保留方面的应用研究。

Relevância:

20.00% 20.00%

Publicador:

Resumo:

用超临界CO2萃取技术提取重庆江津产青花椒挥发油,研究了萃取温度的影响,用色谱-质谱联用仪分析了花椒挥发油化学成分及百分含量,共鉴定出38个化合物,占挥发油总量的98.81%,其中花椒挥发油的特征有效成分之一-哩哪醇含量高达58.79%,表明用超临界CO2萃取技术提取重庆江津产青花椒挥发油品质较高。

Relevância:

20.00% 20.00%

Publicador:

Resumo:

采取超临界CO2萃取-精馏技术,对经尿素包合预处理的鱼油脂肪酸乙酯在超临界CO2流体中的溶解情况进行了考察,探索了EPA、DHA的分离提纯工艺,并讨论了实验的影响因素。实验结果表明:采用温度梯度结合逐步升压法,能使鱼油脂肪酸乙酯按碳链长度依次分离,EPA+DHA提纯至90%,两次分离后,EPA提纯至67%,DHA提纯至90%以上。