917 resultados para Mathieu, Funções de
Resumo:
Se desarrolla la noción de razonamiento covariacional y se propone un marco conceptual para describir las acciones mentales involucradas al aplicar razonamiento covariacional cuando se interpretan y representan funciones asociadas a eventos dinámicos. Se reporta la habilidad para razonar sobre cantidades covariantes en situaciones dinámicas, de estudiantes de alto desempeño en un curso de cálculo. El estudio reveló que ellos eran capaces de construir imágenes de la variable dependiente de una función que cambia simultáneamente con el cambio imaginado de la variable independiente, y en algunas ocasiones eran capaces de construir imágenes de la razón de cambio para intervalos contiguos del dominio de una función. Sin embargo, al parecer, tuvieron dificultad para formar imágenes de una razón cambiante de manera continua y no pudieron representar con exactitud o interpretar los puntos de inflexión ni la razón creciente y decreciente para funciones asociadas a situaciones dinámicas. Estos hallazgos sugieren que el currículo y la instrucción deberían aumentar el énfasis en el cambio que debe darse en los alumnos de una imagen coordinada de dos variables que cambian simultáneamente a una imagen coordinada de razón de cambio instantánea con cambios continuos en la variable independiente para funciones asociadas a situaciones dinámicas.
Resumo:
En este trabajo nos centramos en la descripción de estrategias de resolución de problemas en los que el razonamiento inductivo puede ser un heurístico. La resolución de diferentes tipos de problemas puede contribuir a la adquisición de la competencia matemática. Presentamos y comparamos parte de los resultados de dos problemas propuestos en una investigación más amplia (Cañadas, 2007).
Resumo:
Se describe y analiza el desempeño de dos niños de educación primaria con edades comprendidas entre 6 y 7 años, en varias cuestiones y tareas sobre invención y resolución de problemas aritméticos verbales. Los resultados informan de su conocimiento informal sobre la idea de problema, los elementos que lo componen, el papel que juegan los números en un problema, y los factores que determinan que un problema sea difícil.
Resumo:
La experiencia muestra la forma como los docentes pueden apropiarse de los recursos didácticos físicos, como es el que brinda los elementos que se tienen en el aula taller de matemáticas y como su uso se constituye en una fuente de adquisición de conceptos que hacen posible un aprendizaje activo y la enseñanza se convierte en una estrategia pedagógica basada en el uso de materiales manipulables que están al alcance de nuestros estudiantes que se apropian de nuevos ambientes de aprendizaje.
Resumo:
Presentamos una propuesta para trabajar los fractales en educación secundaria. Proponemos el uso de los fractales como medio para que los alumnos repasen y trabajen, de una forma original y creativa, otros conceptos geométricos del currículo relacionados con los fractales. Durante el taller mostraremos una idea intuitiva de fractal así como el modo de construir algunos de ellos de manera sencilla y entretenida. En las construcciones utilizaremos materiales accesibles y de fácil manejo como el papel, la regla, el compás y las tijeras.
Resumo:
En esta comunicación se describe y analiza una experiencia en un aula TIC con alumnos de tercero de ESO en la que se utiliza Internet como fuente de información para profundizar en una construcción matemática de gran atractivo visual y de gran aplicabilidad en la modelización de la naturaleza, los fractales.
Resumo:
In this paper we present an analysis of the inductive reasoning of twelve secondary students in a mathematical problem-solving context. Students were proposed to justify what is the result of adding two even numbers. Starting from the theoretical framework, which is based on Pólya’s stages of inductive reasoning, and our empirical work, we created a category system that allowed us to make a qualitative data analysis. We show in this paper some of the results obtained in a previous study.
Resumo:
In this paper we present different ways used by Secondary students to generalize when they try to solve problems involving sequences. 359 Spanish students solved generalization problems in a written test. These problems were posed through particular terms expressed in different representations. We present examples that illustrate different ways of achieving various types of generalization and how students express generalization. We identify graphical representation of generalization as a useful tool of getting other ways of expressing generalization, and we analyze its connection with other ways of expressing it.
Resumo:
Se presenta un ejemplo de análisis didáctico del tópico "Ecuaciones de primer grado y sistemas de ecuaciones"
Resumo:
Unidad didáctica sobre razones trigonométricas para educación secundaria.
Resumo:
En este trabajo se analizan los errores que cometen los sujetos al realizar una actividad relacionada con problemas matemáticos de carácter inductivo. Para ello, se detectan los errores, se explica el proceso que han seguido los sujetos en la resolución errónea del problema y se procede a su clasificación.
Resumo:
Distinguiremos tres contribuciones de la Teoría Antropológica de lo didáctico a la formación del profesorado de secundaria: la manera de plantear el problema de la formación y delimitar el ámbito empírico en el que éste debe situarse y abordarse; la propuesta y experimentación de dispositivos de formación; y, finalmente, la puesta en evidencia de fenómenos que inciden en el desarrollo de esta formación dificultándola o facilitándola. Los resultados obtenidos durante estos últimos años con experiencias concretas de formación del profesorado de matemáticas de secundaria ponen de manifiesto algunas dolencias que no parecen poder remediarse sin una cooperación estrecha entre la propia formación, la investigación en didáctica de las matemáticas y este ente todavía desdibujado que es la profesión de profesor de matemáticas.
Resumo:
Partiendo de las resoluciones de 165 estudiantes de 4º de las ESO (15-16 años), hablamos sobre las dificultades de un tipo particular de problemas (problemas de nivel N0) y las relacionamos con su estructura y con el contexto en el que están formulados. Mostramos como, en efecto, es posible hablar de la influencia del contexto, principalmente sobre la dificultad de la solución del problema, y de una influencia significativa de la estructura sobre otras dos de las dificultades consideradas en este estudio: la dificultad apreciada del problema y la dificultad del problema.
Resumo:
Estudiamos, desde perspectivas simbólica y fenomenológica, diferencias y analogías existentes entre dos definiciones: la de límite finito de una sucesión y la de sucesión de Cauchy. Las diferencias entre una y otra definición parecen acentuarse en el aspecto fenomenológico, ya que observamos fenómenos distintos en cada una de ellas.
Resumo:
La comunidad de investigación en educación matemática se ha venido preocupando recientemente por el problema del escalamiento: el proceso de reproducir en gran escala experiencias innovadoras que, en contextos concretos, han demostrado ser eficaces para la mejora del rendimiento de los escolares en matemáticas. En este documento caracterizamos la noción de escalamiento, describimos cuatro proyectos de escalamiento en educación matemática, identificamos los elementos claves comunes a estos proyectos y reflexionamos sobre la problemática de diseñar e implementar este tipo de proyectos en el contexto de un país latinoamericano.