891 resultados para Design methods
Resumo:
In drug discovery, different methods exist to create new inhibitors possessing satisfactory biological activity. The multisubstrate adduct inhibitor (MAI) approach is one of these methods, which consists of a covalent combination between analogs of the substrate and the cofactor or of the multiple substrates used by the target enzyme. Adopted as the first line of investigation for many enzymes, this method has brought insights into the enzymatic mechanism, structure, and inhibitory requirements. In this review, the MAI approach, applied to different classes of enzyme, is reported from the point of view of biological activity.
Resumo:
PURPOSE:
Design and evaluation of a novel laser-based method for micromoulding of microneedle arrays from polymeric materials under ambient conditions. The aim of this study was to optimise polymeric composition and assess the performance of microneedle devices that possess different geometries.
METHODS:
A range of microneedle geometries was engineered into silicone micromoulds, and their physicochemical features were subsequently characterised.
RESULTS:
Microneedles micromoulded from 20% w/w aqueous blends of the mucoadhesive copolymer Gantrez® AN-139 were surprisingly found to possess superior physical strength than those produced from commonly used pharma polymers. Gantrez® AN-139 microneedles, 600 µm and 900 µm in height, penetrated neonatal porcine skin with low application forces (>0.03 N per microneedle). When theophylline was loaded into 600 µm microneedles, 83% of the incorporated drug was delivered across neonatal porcine skin over 24 h. Optical coherence tomography (OCT) showed that drug-free 600 µm Gantrez® AN-139 microneedles punctured the stratum corneum barrier of human skin in vivo and extended approximately 460 µm into the skin. However, the entirety of the microneedle lengths was not inserted.
CONCLUSION:
In this study, we have shown that a novel laser engineering method can be used in micromoulding of polymeric microneedle arrays. We are currently carrying out an extensive OCT-informed study investigating the influence of microneedle array geometry on skin penetration depth, with a view to enhanced transdermal drug delivery from optimised laser-engineered Gantrez® AN-139 microneedles.
Resumo:
Structure-based modeling methods have been used to design a series of disubstituted triazole-linked acridine compounds with selectivity for human telomeric quadruplex DNAs. A focused library of these compounds was prepared using click chemistry and the selectivity concept was validated against two promoter quadruplexes from the c-kit gene with known molecular structures, as well as with duplex DNA using a FRET-based melting method. Lead compounds were found to have reduced effects on the thermal stability of the c-kit quadruplexes and duplex DNA structures. These effects were further explored with a series of competition experiments, which confirmed that binding to duplex DNA is very low even at high duplex:telomeric quadruplex ratios. Selectivity to the c-kit quadruplexes is more complex, with some evidence of their stabilization at increasing excess over human telomeric quadruplex DNA. Selectivity is a result of the dimensions of the triazole-acridine compounds; and in particular the separation of the two alkyl-amino terminal groups. Both lead compounds also have selective inhibitory effects on the proliferation of cancer cell lines compared to a normal cell line, and one has been shown to inhibit the activity of the telomerase enzyme, which is selectively expressed in tumor cells, where it plays a role in maintaining telomere integrity and cellular immortalization.
Resumo:
Traditional business models in the aerospace industry are based on a conventional supplier to customer relationship based on the design, manufacture and subsequent delivery of the physical product. Service provision, from the manufacturer's perspective, is typically limited to the supply of procedural documentation and the provision of spare parts to the end user as the product passes through the latter stages of its intended lifecycle. Challenging economic and political conditions have resulted in end users re-structuring their core business activities, particularly in the defence sector. This has resulted in the need for original equipment manufacturers (OEMs) to integrate and manage support service activities in partnership with the customer to deliver platform availability. This improves the probability of commercial sustainability for the OEM through shared operational risks while reducing the cost of platform ownership for the customer. The need for OEMs to evolve their design, manufacture and supply strategies by focusing on customer requirements has revealed a need for reconstruction of traditional internal behaviours and design methodologies. Application of organisational learning is now a well recognised principle for innovative companies to achieve long term growth and sustained technical development, and hence, greater market command. It focuses on the process by which the organisation's knowledge and value base changes, leading to improved problem solving ability and capacity for action. From the perspective of availability contracting, knowledge and the processes by which it is generated, used and retained, become primary assets within the learning organisation. This paper will introduce the application of digital methods to asset management by demonstrating how the process of learning can benefit from a digital approach, how product and process design can be integrated within a virtual framework and finally how the approach can be applied in a service context.
Resumo:
Aims: To design, evaluate and pilot a novel programme that would allow school children to become “pharmacists for the day”,encouraging them to recognise the importance of science, to contribute to the Department of Health‟s Building the Community Partnership strategy and University Outreach to the community and to provide undergraduate pharmacy students with teaching experience and an opportunity to build their CV.
Methods: Concept and formulation development, branding work,schools visits,questionnaires and semi-structured interviews.
Results: Suitable formulations were developed and prepared by school children on visits to their schools. The children seemed to enjoy the experience and their teachers gave both positive and constructive feedback. Pharmacy undergraduate students felt they had gained valuable experience that will benefit their future careers.
Conclusion: The Pharmacists in Schools outreach programme has now been successfully piloted and launched and will now be fully implemented in 20 schools in the local community.
Resumo:
Ecological coherence is a multifaceted conservation objective that includes some potentially conflicting concepts. These concepts include the extent to which the network maximises diversity (including genetic diversity) and the extent to which protected areas interact with non-reserve locations. To examine the consequences of different selection criteria, the preferred location to complement protected sites was examined using samples taken from four locations around each of two marine protected areas: Strangford Lough and Lough Hyne, Ireland. Three different measures of genetic distance were used: FST, Dest and a measure of allelic dissimilarity, along with a direct assessment of the total number of alleles in different candidate networks. Standardized site scores were used for comparisons across methods and selection criteria. The average score for Castlehaven, a site relatively close to Lough Hyne, was highest, implying that this site would capture the most genetic diversity while ensuring highest degree of interaction between protected and unprotected sites. Patterns around Strangford Lough were more ambiguous, potentially reflecting the weaker genetic structure around this protected area in comparison to Lough Hyne. Similar patterns were found across species with different dispersal capacities, indicating that methods based on genetic distance could be used to help maximise ecological coherence in reserve networks. ⺠Ecological coherence is a key component of marine protected area network design. ⺠Coherence contains a number of competing concepts. ⺠Genetic information from field populations can help guide assessments of coherence. ⺠Average choice across different concepts of coherence was consistent among species. ⺠Measures can be combined to compare the coherence of different network designs.
Resumo:
The application of the contingent valuation method (CVM) in this paper incorporates a prior preference ordering of several alternative future afforestation programmes which could be implemented in Ireland over the next decade. This particular experimental design is thereby shown to reveal the potentially conflicting preferences of different groups within society. These findings are used to devise appropriate CVM scenarios to take account, not only of the efficiency gains of choosing a single policy alternative over others, but also the effects on the distribution of non market benefit between different groups within society, arising from choice between alternatives. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
Value driven design is an innovative design process that utilizes the optimization of a system level value function to determine the best possible design. This contrasts with more traditional systems engineering techniques, which rely on satisfying requirements to determine the design solution. While ‘design for value’ is intuitively acceptable, the transformation of value driven design concepts into practical tools and methods for its application is challenging. This, coupled with the growing popularity of value-centric design philosophies, has led to a proposed research agenda in value driven design. This research agenda asks fundamental questions about the design philosophy and attempts to identify areas of significant challenge. The research agenda is meant to stimulate discussion in the field, as well as prompt research that will lead to the development of tools and methodologies that will facilitate the application of value driven design and further the state of the art.
Resumo:
Computer-aided drug design becomes an important part of G-protein coupled receptors (GPCR) drug discovery process that is applied for improving the efficiency of derivation and optimization of novel ligands. It represents the combination of methods that-use-structural information of a receptor binding site of known ligands to design new ligands. In this report, we give a brief description of ligand binding sites in cholecystokinin and gastrin receptors (CK1R and CCK2R) which were delineated using experimental and computational methods, and then, we show how the validated ligand binding sites can be used to design and improve novel ligands. The translation of the knowledge of ligand-binding sites of different GPCRs to computer-aided design of novel ligands is summarized.
Resumo:
Methods are presented for the rapid design of DSP ASICs based on the use of hierarchical VHDL libraries. These are portable across many silicon foundries and allow complex DSP silicon systems to be developed in a fraction of the time normally required. Resulting designs are highly competitive with ones created using conventional methods. The approach is illustrated by its application to ADPCM codec and DCT cores.
Resumo:
Methods are presented for the rapid design of DSP ASICs based on the use of a series of hierarchical VHDL libraries which are portable across many silicon foundries. These allows complex DSP silicon systems to be developed in a small fraction of the time normally required. Resulting designs are highly competitive with those developed using more conventional methods. The approach is illustrated using several examples. These include ADPCM codecs, as well as DCT and FFT cores.
Resumo:
Methods are presented for developing synthesizable FFT cores. These are based on a modular approach in which parameterized commutator and processor blocks are cascaded to implement the computations required in many important FFT signal flow graphs. In addition, it is shown how the use of a digital serial data organization can be used to produce systems that offer 100% processor utilization along with reductions in storage requirements. The approach has been used to create generators for the automated synthesis of FFT cores that are portable across a broad range of silicon technologies. Resulting chip designs are competitive with ones created using manual methods but with significant reductions in design times.
Resumo:
Test procedures for a pipelined bit-parallel IIR filter chip which maximally exploit its regularity are described. It is shown that small modifications to the basic architecture result in significant reductions in the number of test patterns required to test such chips. The methods used allow 100% fault coverage to be achieved using less than 1000 test vectors for a chip which has 12 bit data and coefficients.
Resumo:
A scheduling method for implementing a generic linear QR array processor architecture is presented. This improves on previous work. It also considerably simplifies the derivation of schedules for a folded linear system, where detailed account has to be taken of processor cell latency. The architecture and scheduling derived provide the basis of a generator for the rapid design of System-on-a-Chip (SoC) cores for QR decomposition.