930 resultados para Cardiología -- Investigaciones
Resumo:
Los mapas conceptuales se pueden emplear como una técnica de estudio y como una herramienta para el proceso de enseñanza y aprendizaje de las matemáticas, permitiendo al docente explorar los conocimientos previos que sus estudiantes tienen frente a un tema específico, favoreciendo la construcción de relaciones y organización de conceptos, fomentando la reflexión, el análisis y la creatividad. La implementación de los mapas conceptuales en investigaciones relacionadas con el aprendizaje y la enseñanza de las matemáticas, han mostrado que éstos ponen de manifiesto los procesos de razonamiento seguidos por el estudiante, evidenciando las conexiones entre los conceptos matemáticos que pueden dar lugar a proposiciones válidas o no válidas y a diferentes niveles jerárquicos, que a su vez, proporcionan una visión sobre el nivel de comprensión que poseen, tanto profesores como estudiantes, en dichos conceptos.
Resumo:
Los resultados que se reportan, se sustentan en las observaciones realizadas en investigaciones sobre las dificultades que enfrentan los estudiantes de matemáticas de los diferentes niveles en el proceso de modelaje matemático. Con el estudio se han buscado explicaciones del origen de los problemas, así como identificar la teoría que sustente la integración de opciones para ayudar a que los alumnos superen los obstáculos de aprendizaje identificados. Se describen de manera general, los estudios realizados, así como algunas de las conclusiones principales que se generaron a partir de los datos recopilados, que ponen de manifiesto la importancia del dominio y comprensión del lenguaje cotidiano, así como de los procesos de traducción al lenguaje matemático.
Resumo:
La atención a la diversidad escolar es uno de los temas de creciente interés en nuestro país. Particularmente, la falta de investigación y de reconocimiento gubernamental de los niños con algún talento especial ha propiciado la incertidumbre en el aula. Tal situación tiene como consecuencia la necesidad de estudios de contexto que permitan la identificación y el tratamiento escolar de esta población. Este trabajo tiene como finalidad presentar un estado del arte acerca de algunas investigaciones y proyectos llevados a cabo en torno a estos niños. Todo esto, con la finalidad de poder encontrar aquellas características que nos permitan identificar a un niño mexicano con talento en matemáticas.
Resumo:
Las distancias entre saberes de la vida diaria, los escolares y los eruditos, afincan sus raíces en matrices de sentido de epistemes propias. Tal ocurre para las nociones de velocidad y tiempo de la matemática del cambio. Una didáctica crítica es desafiada a deconstruirlos, desentrañando su presencia en el sentido común del estudiantado y en los saberes escolares de los que debe apropiarse éste, de modo de proporcionar antecedentes para diseñar y validar puentes de diálogo entre estos cuerpos de saberes. Para colaborar en esta línea, se presentan matrices de sentido para las nociones de velocidad y de tiempo obtenidas en investigaciones de la Matemática del Cambio.
Resumo:
Este documento reporta los resultados de un estudio exploratorio aplicado a estudiantes de secundaria que presentan problemas de equiprobabilidad y centración en ejercicios de probabilidad basados en el razonamiento proporcional. Los problemas propuestos a los estudiantes han sido analizados por Green, Papinni, Fischbein y Gazit en investigaciones previas, de esta manera, nuestro aporte consiste en proponer una extensión a los resultados obtenidos por estos autores a partir de marco conceptual SOLO Taxonómico propuesto por Biggs y Collins (1982), que consiste en cinco niveles presentes en el ciclo de aprendizaje de una persona dentro de cada uno de los estadios de Piaget.
Resumo:
Este trabajo presenta el diseño de dos secuencias didácticas en forma de prácticas de laboratorio fundamentadas en resultados de investigaciones en matemática educativa de corte socioepistemológico. Se busca favorecer el uso inteligente de la tecnología (calculadoras graficadoras) en el aula de matemáticas así como un acercamiento entre el profesor y alumno de matemáticas para con la investigación en matemática educativa.
Resumo:
Este trabajo de investigación ha centrado la atención en generar diseños didácticos que aborden temas del Cálculo y Precálculo del currículo actual, cuyos fundamentos teóricos están basados en investigaciones de corte socioepistemológico favoreciendo el uso inteligente de la tecnología en el aula de matemáticas. En éstos se retomarán aspectos que ayuden a la reconstrucción de significados de tópico matemáticos como el teorema de Thales, el uso de la subtangente para caracterizar una curva (máximos, mínimos y puntos de inflexión) y la noción de acumulación para abordar el área bajo la curva.
Resumo:
La periodicidad como propiedad es identificada de manera natural por los individuos y resulta habitual el uso de los significados creados de forma compartida y que éstos se trasladen en contextos diferentes en donde son aplicados. Los resultados obtenidos en investigaciones como Buendía (2004, 2005a) y Alcaraz (2005) aportan no sólo elementos de corte cognitivo, sino herramientas que fungen como argumentos válidos en el reconocimiento de la naturaleza periódica. Lo periódico puede conformar todo un lenguaje, abarcando los ámbitos culturales, históricos e institucionales y procurándole un carácter útil al conocimiento matemático. La unidad de análisis es el elemento que tiende un puente entre un tratamiento empírico de la periodicidad y uno científico (Montiel, 2005), lo cual favorece una construcción significativa del conocimiento matemático. Nuestro marco teórico es la aproximación socioepistemológica la cual centra su atención en el examen de las prácticas sociales, entendidas como las acciones o actividades realizadas intencionalmente con un objetivo de transformación y con ayuda de herramientas que favorecen la construcción del conocimiento matemático, incluso antes que estudiar a los conocimientos mismos.
Resumo:
Se presenta una experiencia de investigación-acción colaborativa en fase de desarrollo que parte de la preocupación del profesorado de un colegio de Educación Primaria por mejorar su metodología en lo relativo al desarrollo del pensamiento numérico. El centro, que está ubicado en un barrio con alto riesgo de exclusión social, inició su transformación en Comunidad de Aprendizaje hace tres años. A grandes rasgos, la apuesta metodológica se basa en el aprendizaje significativo del Sistema de Numeración Decimal de la mano de unos materiales manipulativos concretos y la utilización de los denominados algoritmos Abiertos Basados en Números (ABN) para el cálculo. El proyecto, en el que participan los maestros y maestras del centro, profesorado de Didáctica de las Matemáticas, asesores de formación y alumnado universitario, pone en acción iniciativas de formación del profesorado, innovación en el aula e investigación educativa.
Resumo:
El objetivo de este estudio es determinar las dificultades que estudiantes de cuarto de ESO, de bachillerato y del Máster de Profesor de Educación Secundaria de la especialidad de Matemáticas tienen con la operatoria y el orden, cuando realizan cálculos con números decimales periódicos. El trabajo se sustenta en un estudio de Rittaud y Vivier, del cual se hace una réplica de una parte de su cuestionario que utilizamos para la toma de datos. El análisis de las respuestas de los estudiantes permite identificar errores y carencias en la enseñanza, conducentes a un esquema de clasificación e interpretación de las actuaciones de los estudiantes.
Resumo:
Presentamos resultados relativos a la equivalencia matemática y fenomenológica de la definición de límite finito de una sucesión y la definición de sucesión de Cauchy. Para ello enunciamos dos criterios que permiten determinar cuando dos fenómenos son equivalentes y cuando lo son dos definiciones, desde un punto de vista fenomenológico. A continuación y usando estos resultados realizamos avances significativos para demostrar en un futuro próximo que la definición de límite finito de una función en el infinito y la condición de Bolzano-Cauchy, además de ser equivalentes matemáticamente también lo son fenomenológicamente. Para ello enunciamos los fenómenos organizados por la definición de Bolzano-Cauchy que convenimos en llamarla definición de función de Cauchy.
Resumo:
En este documento indagamos sobre algunos aspectos del conocimiento didáctico que un grupo de maestros de primaria en formación inicial ponen en juego al redactar un texto cuyo propósito es iniciar a los escolares de primaria en la noción de fracción. Usamos algunas de las categorías del análisis didáctico para analizar las producciones de los futuros maestros. Los resultados destacan los conocimientos que los participantes seleccionan, como el concepto de numerador y denominador, la suma y resta de fracciones o el concepto de unidad, y el modo en que los introducen en sus propuestas.
Resumo:
Se estudia el proceso que va desde las acciones reales y efectivas de añadir y quitar hasta la construcción de las operaciones aritméticas de suma y resta por parte de los escolares de 3, 4 y 5 años. El esquema lógico-matemático subyacente es el de transformaciones. Para que se den estas operaciones deben presentarse simultáneamente dicho esquema y la cuantificación, siendo esa simultaneidad la que lleva a las relaciones numéricas. Teniendo en cuenta que el origen de las operaciones de suma y resta en el escolar está supeditado a las acciones de añadir y quitar que se desarrollan en un proceso de construcción mental de los esquemas lógicos-matemáticos de transformaciones de cantidades discretas, se propone un plan de actuación en el aula de educación infantil mediante un tratamiento sistemático de dichas operaciones.
Resumo:
En la investigación conducente a una tesis doctoral, estudiamos cómo reflexionan sobre su enseñanza, profesores de matemáticas, mientras participan en un curso de formación. La reflexión comienza seleccionando un problema profesional. Una de las parejas de profesores se planteó profundizar en las dificultades que tienen los alumnos para traducir enunciados a expresiones algebraicas (que los profesores llaman modelización). Para poder interpretar la reflexión hemos realizado un análisis didáctico de la enseñanza del álgebra en el inicio de secundaria. En esta comunicación presentamos algunas apreciaciones sobre el papel de la modelización en álgebra y su relación con los diferentes “roles de las letras en álgebra”, que nos servirán para interpretar los planteamientos y reflexiones de los profesores.
Resumo:
En esta comunicación se analizan dificultades y recursos que tienen los estudiantes para profesores de Educación Primaria y Secundaria al resolver problemas de Matemáticas, que se proponen como tareas y actividades básicas en un plan de formación inicial de Profesores de Matemáticas en la Educación Obligatoria, que facilitan el desarrollo de competencias profesionales útiles