969 resultados para Local Partial Likelihood
Resumo:
The Aitchison vector space structure for the simplex is generalized to a Hilbert space structure A2(P) for distributions and likelihoods on arbitrary spaces. Central notations of statistics, such as Information or Likelihood, can be identified in the algebraical structure of A2(P) and their corresponding notions in compositional data analysis, such as Aitchison distance or centered log ratio transform. In this way very elaborated aspects of mathematical statistics can be understood easily in the light of a simple vector space structure and of compositional data analysis. E.g. combination of statistical information such as Bayesian updating, combination of likelihood and robust M-estimation functions are simple additions/ perturbations in A2(Pprior). Weighting observations corresponds to a weighted addition of the corresponding evidence. Likelihood based statistics for general exponential families turns out to have a particularly easy interpretation in terms of A2(P). Regular exponential families form finite dimensional linear subspaces of A2(P) and they correspond to finite dimensional subspaces formed by their posterior in the dual information space A2(Pprior). The Aitchison norm can identified with mean Fisher information. The closing constant itself is identified with a generalization of the cummulant function and shown to be Kullback Leiblers directed information. Fisher information is the local geometry of the manifold induced by the A2(P) derivative of the Kullback Leibler information and the space A2(P) can therefore be seen as the tangential geometry of statistical inference at the distribution P. The discussion of A2(P) valued random variables, such as estimation functions or likelihoods, give a further interpretation of Fisher information as the expected squared norm of evidence and a scale free understanding of unbiased reasoning
Resumo:
In this paper I investigate the optimal level of decentralization of tasks for the provision of a local public good. I enrich the well-known trade-off between internalization of spillovers (that favors centralization) and accountability (that favors decentralization) by considering that public goods are produced through multiple tasks. This adds an additional institutional setting, partial decentralization, to the classical choice between full decentralization and full centralization. The main results are that partial decentralization is optimal when both the variance of exogenous shocks to electorate’s utility is large and the electorate expects high performance from politicians. I also show that the optimal institutional setting depends on the degree of substitutability / complementarity between tasks. In particular, I show that a large degree of substitutability between tasks makes favoritism more likely, which increases the desirability of partial decentralization as a safeguard against favoritism.
Resumo:
The variogram is essential for local estimation and mapping of any variable by kriging. The variogram itself must usually be estimated from sample data. The sampling density is a compromise between precision and cost, but it must be sufficiently dense to encompass the principal spatial sources of variance. A nested, multi-stage, sampling with separating distances increasing in geometric progression from stage to stage will do that. The data may then be analyzed by a hierarchical analysis of variance to estimate the components of variance for every stage, and hence lag. By accumulating the components starting from the shortest lag one obtains a rough variogram for modest effort. For balanced designs the analysis of variance is optimal; for unbalanced ones, however, these estimators are not necessarily the best, and the analysis by residual maximum likelihood (REML) will usually be preferable. The paper summarizes the underlying theory and illustrates its application with data from three surveys, one in which the design had four stages and was balanced and two implemented with unbalanced designs to economize when there were more stages. A Fortran program is available for the analysis of variance, and code for the REML analysis is listed in the paper. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
This study presents a numerical method to derive the Darcy- Weisbach friction coefficient for overland flow under partial inundation of surface roughness. To better account for the variable influence of roughness with varying levels of emergence, we model the flow over a network which evolves as the free surface rises. This network is constructed using a height numerical map, based on surface roughness data, and a discrete geometry skeletonization algorithm. By applying a hydraulic model to the flows through this network, local heads, velocities, and Froude and Reynolds numbers over the surface can be estimated. These quantities enable us to analyze the flow and ultimately to derive a bulk friction factor for flow over the entire surface which takes into account local variations in flow quantities. Results demonstrate that although the flow is laminar, head losses are chiefly inertial because of local flow disturbances. The results also emphasize that for conditions of partial inundation, flow resistance varies nonmonotonically but does generally increase with progressive roughness inundation.
Resumo:
The variogram is essential for local estimation and mapping of any variable by kriging. The variogram itself must usually be estimated from sample data. The sampling density is a compromise between precision and cost, but it must be sufficiently dense to encompass the principal spatial sources of variance. A nested, multi-stage, sampling with separating distances increasing in geometric progression from stage to stage will do that. The data may then be analyzed by a hierarchical analysis of variance to estimate the components of variance for every stage, and hence lag. By accumulating the components starting from the shortest lag one obtains a rough variogram for modest effort. For balanced designs the analysis of variance is optimal; for unbalanced ones, however, these estimators are not necessarily the best, and the analysis by residual maximum likelihood (REML) will usually be preferable. The paper summarizes the underlying theory and illustrates its application with data from three surveys, one in which the design had four stages and was balanced and two implemented with unbalanced designs to economize when there were more stages. A Fortran program is available for the analysis of variance, and code for the REML analysis is listed in the paper. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
A scale-invariant moving finite element method is proposed for the adaptive solution of nonlinear partial differential equations. The mesh movement is based on a finite element discretisation of a scale-invariant conservation principle incorporating a monitor function, while the time discretisation of the resulting system of ordinary differential equations is carried out using a scale-invariant time-stepping which yields uniform local accuracy in time. The accuracy and reliability of the algorithm are successfully tested against exact self-similar solutions where available, and otherwise against a state-of-the-art h-refinement scheme for solutions of a two-dimensional porous medium equation problem with a moving boundary. The monitor functions used are the dependent variable and a monitor related to the surface area of the solution manifold. (c) 2005 IMACS. Published by Elsevier B.V. All rights reserved.
Resumo:
The majority of studies demonstrating local adaptation of insect herbivores involve sessile species, particularly those with a parthenogentic phase to their life history or endophagous "parasites" of plants. Current arguments suggest the strength of selection determines whether local adaptation can or cannot take place. Therefore local adaptation should not be limited to species with such traits. We studied the ability of three polyphagous geometrid moths with flightless adult females (Erannisdefoliaria, Operophtera brumata and O. fagata) to synchronise their egg hatching with the budburst of a local host species in north east Scotland. A strong selection for hatching time is expected among generalist moths given the large variation in budburst phenology and an inability to hatch in synchrony with budburst decreases moth fitness substantially. In two successive seasons, we trapped emerging females from patches of five host species and recorded the temperature sum needed for 50% egg hatch of each brood laid by the trapped females. The hatching times of broods were compared against the average budburst time of the maternal host species in the study area. In addition, the trapping dates of each female were recorded. Only O. brumata showed synchrony with egg hatch and budburst which suggests local phenological adaptation to different host species. This could be maintained by selection and partial reproductive isolation between populations dwelling on different host species. No phenological adaptation was found in the other common geometrids of the study area
Resumo:
Existing research on synchronous remote working in CSCW has highlighted the troubles that can arise because actions at one site are (partially) unavailable to remote colleagues. Such ‘local action’ is routinely characterised as a nuisance, a distraction, subordinate and the like. This paper explores interconnections between ‘local action’ and ‘distributed work’ in the case of a research team virtually collocated through ‘MiMeG’. MiMeG is an e-Social Science tool that facilitates ‘distributed data sessions’ in which social scientists are able to remotely collaborate on the real-time analysis of video data. The data are visible and controllable in a shared workspace and participants are additionally connected via audio conferencing. The findings reveal that whilst the (partial) unavailability of local action is at times problematic, it is also used as a resource for coordinating work. The paper considers how local action is interactionally managed in distributed data sessions and concludes by outlining implications of the analysis for the design and study of technologies to support group-to-group collaboration.
Resumo:
Neural field models of firing rate activity typically take the form of integral equations with space-dependent axonal delays. Under natural assumptions on the synaptic connectivity we show how one can derive an equivalent partial differential equation (PDE) model that properly treats the axonal delay terms of the integral formulation. Our analysis avoids the so-called long-wavelength approximation that has previously been used to formulate PDE models for neural activity in two spatial dimensions. Direct numerical simulations of this PDE model show instabilities of the homogeneous steady state that are in full agreement with a Turing instability analysis of the original integral model. We discuss the benefits of such a local model and its usefulness in modeling electrocortical activity. In particular, we are able to treat “patchy” connections, whereby a homogeneous and isotropic system is modulated in a spatially periodic fashion. In this case the emergence of a “lattice-directed” traveling wave predicted by a linear instability analysis is confirmed by the numerical simulation of an appropriate set of coupled PDEs.
Resumo:
Introduction: Although the use of local flaps in conservative breast surgery (CBS) reconstruction is a reliable technique, little information has been available regarding outcome following the use of perforator flaps. The purpose of this study is to analyze the feasibility, surgical planning and outcome following CBS reconstruction with intercostal artery perforator (ICAP) flap. Patients/methods: Thirteen patients underwent CBS reconstructions with an ICAP flap. These flaps were raised from adjacent tissue located on the lateral and thoracic region and based on perforators originating from the costal and muscular segment of the intercostal vessels. The technique was indicated in patients with small/moderate volume breasts. Results: Mean time of follow-up was 32 months. Flap complications were evaluated and information on patient satisfaction were collected. 61.5 percent had tumors located in the lower-outer quadrants and 69.2 percent had tumors measuring 2 cm or less (T1). Complications occurred in 3 patients (23%), including wound dehiscence in 2 patients and fat necrosis in one. All cases were treated by conservative approach with a good result. No flap loss or wound infection were reported. 90 percent were either satisfied or very satisfied with their result. Conclusion: The ICAP flap is a reliable technique for immediate CBS reconstruction. The technique is advantageous because it does not require the use of muscle transfer, with minimum donor site morbidity. Success depends on patient selection, coordinated planning with the oncological surgeon and careful intra-operative management. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
1. Analyses of species association have major implications for selecting indicators for freshwater biomonitoring and conservation, because they allow for the elimination of redundant information and focus on taxa that can be easily handled and identified. These analyses are particularly relevant in the debate about using speciose groups (such as the Chironomidae) as indicators in the tropics, because they require difficult and time-consuming analysis, and their responses to environmental gradients, including anthropogenic stressors, are poorly known. 2. Our objective was to show whether chironomid assemblages in Neotropical streams include clear associations of taxa and, if so, how well these associations could be explained by a set of models containing information from different spatial scales. For this, we formulated a priori models that allowed for the influence of local, landscape and spatial factors on chironomid taxon associations (CTA). These models represented biological hypotheses capable of explaining associations between chironomid taxa. For instance, CTA could be best explained by local variables (e.g. pH, conductivity and water temperature) or by processes acting at wider landscape scales (e.g. percentage of forest cover). 3. Biological data were taken from 61 streams in Southeastern Brazil, 47 of which were in well-preserved regions, and 14 of which drained areas severely affected by anthropogenic activities. We adopted a model selection procedure using Akaike`s information criterion to determine the most parsimonious models for explaining CTA. 4. Applying Kendall`s coefficient of concordance, seven genera (Tanytarsus/Caladomyia, Ablabesmyia, Parametriocnemus, Pentaneura, Nanocladius, Polypedilum and Rheotanytarsus) were identified as associated taxa. The best-supported model explained 42.6% of the total variance in the abundance of associated taxa. This model combined local and landscape environmental filters and spatial variables (which were derived from eigenfunction analysis). However, the model with local filters and spatial variables also had a good chance of being selected as the best model. 5. Standardised partial regression coefficients of local and landscape filters, including spatial variables, derived from model averaging allowed an estimation of which variables were best correlated with the abundance of associated taxa. In general, the abundance of the associated genera tended to be lower in streams characterised by a high percentage of forest cover (landscape scale), lower proportion of muddy substrata and high values of pH and conductivity (local scale). 6. Overall, our main result adds to the increasing number of studies that have indicated the importance of local and landscape variables, as well as the spatial relationships among sampling sites, for explaining aquatic insect community patterns in streams. Furthermore, our findings open new possibilities for the elimination of redundant data in the assessment of anthropogenic impacts on tropical streams.
A bivariate regression model for matched paired survival data: local influence and residual analysis
Resumo:
The use of bivariate distributions plays a fundamental role in survival and reliability studies. In this paper, we consider a location scale model for bivariate survival times based on the proposal of a copula to model the dependence of bivariate survival data. For the proposed model, we consider inferential procedures based on maximum likelihood. Gains in efficiency from bivariate models are also examined in the censored data setting. For different parameter settings, sample sizes and censoring percentages, various simulation studies are performed and compared to the performance of the bivariate regression model for matched paired survival data. Sensitivity analysis methods such as local and total influence are presented and derived under three perturbation schemes. The martingale marginal and the deviance marginal residual measures are used to check the adequacy of the model. Furthermore, we propose a new measure which we call modified deviance component residual. The methodology in the paper is illustrated on a lifetime data set for kidney patients.
Resumo:
In this article, we discuss inferential aspects of the measurement error regression models with null intercepts when the unknown quantity x (latent variable) follows a skew normal distribution. We examine first the maximum-likelihood approach to estimation via the EM algorithm by exploring statistical properties of the model considered. Then, the marginal likelihood, the score function and the observed information matrix of the observed quantities are presented allowing direct inference implementation. In order to discuss some diagnostics techniques in this type of models, we derive the appropriate matrices to assessing the local influence on the parameter estimates under different perturbation schemes. The results and methods developed in this paper are illustrated considering part of a real data set used by Hadgu and Koch [1999, Application of generalized estimating equations to a dental randomized clinical trial. Journal of Biopharmaceutical Statistics, 9, 161-178].
Resumo:
Calculations of local influence curvatures and leverage have been well developed when the parameters are unrestricted. In this article, we discuss the assessment of local influence and leverage under linear equality parameter constraints with extensions to inequality constraints. Using a penalized quadratic function we express the normal curvature of local influence for arbitrary perturbation schemes and the generalized leverage matrix in interpretable forms, which depend on restricted and unrestricted components. The results are quite general and can be applied in various statistical models. In particular, we derive the normal curvature under three useful perturbation schemes for generalized linear models. Four illustrative examples are analyzed by the methodology developed in the article.
Resumo:
In this article, we consider local influence analysis for the skew-normal linear mixed model (SN-LMM). As the observed data log-likelihood associated with the SN-LMM is intractable, Cook`s well-known approach cannot be applied to obtain measures of local influence. Instead, we develop local influence measures following the approach of Zhu and Lee (2001). This approach is based on the use of an EM-type algorithm and is measurement invariant under reparametrizations. Four specific perturbation schemes are discussed. Results obtained for a simulated data set and a real data set are reported, illustrating the usefulness of the proposed methodology.