An algebraic theory for generalized Jordan chains and partial signatures in the Lagrangian Grassmannian
| Contribuinte(s) |
UNIVERSIDADE DE SÃO PAULO |
|---|---|
| Data(s) |
20/10/2012
20/10/2012
2010
|
| Resumo |
We discuss an algebraic theory for generalized Jordan chains and partial signatures, that are invariants associated to sequences of symmetric bilinear forms on a vector space. We introduce an intrinsic notion of partial signatures in the Lagrangian Grassmannian of a symplectic space that does not use local coordinates, and we give a formula for the Maslov index of arbitrary real analytic paths in terms of partial signatures. |
| Identificador |
LINEAR & MULTILINEAR ALGEBRA, v.58, n.1, p.89-103, 2010 0308-1087 http://producao.usp.br/handle/BDPI/30744 10.1080/03081080802383636 |
| Idioma(s) |
eng |
| Publicador |
TAYLOR & FRANCIS LTD |
| Relação |
Linear & Multilinear Algebra |
| Direitos |
restrictedAccess Copyright TAYLOR & FRANCIS LTD |
| Palavras-Chave | #symmetric bilinear forms #generalized Jordan chains #partial signatures #Lagrangian Grassmannian #Maslov index #SPECTRAL FLOW #MASLOV INDEX #PATHS #Mathematics |
| Tipo |
article original article publishedVersion |