An algebraic theory for generalized Jordan chains and partial signatures in the Lagrangian Grassmannian


Autoria(s): PICCIONE, Paolo; TAUSK, Daniel V.
Contribuinte(s)

UNIVERSIDADE DE SÃO PAULO

Data(s)

20/10/2012

20/10/2012

2010

Resumo

We discuss an algebraic theory for generalized Jordan chains and partial signatures, that are invariants associated to sequences of symmetric bilinear forms on a vector space. We introduce an intrinsic notion of partial signatures in the Lagrangian Grassmannian of a symplectic space that does not use local coordinates, and we give a formula for the Maslov index of arbitrary real analytic paths in terms of partial signatures.

Identificador

LINEAR & MULTILINEAR ALGEBRA, v.58, n.1, p.89-103, 2010

0308-1087

http://producao.usp.br/handle/BDPI/30744

10.1080/03081080802383636

http://dx.doi.org/10.1080/03081080802383636

Idioma(s)

eng

Publicador

TAYLOR & FRANCIS LTD

Relação

Linear & Multilinear Algebra

Direitos

restrictedAccess

Copyright TAYLOR & FRANCIS LTD

Palavras-Chave #symmetric bilinear forms #generalized Jordan chains #partial signatures #Lagrangian Grassmannian #Maslov index #SPECTRAL FLOW #MASLOV INDEX #PATHS #Mathematics
Tipo

article

original article

publishedVersion