Crossed products by twisted partial actions and graded algebras
Contribuinte(s) |
UNIVERSIDADE DE SÃO PAULO |
---|---|
Data(s) |
20/10/2012
20/10/2012
2008
|
Resumo |
For a twisted partial action e of a group G on an (associative non-necessarily unital) algebra A over a commutative unital ring k, the crossed product A x(Theta) G is proved to be associative. Given a G-graded k-algebra B = circle plus(g is an element of G) B-g with the mild restriction of homogeneous non-degeneracy, a criteria is established for B to be isomorphic to the crossed product B-1 x(Theta) G for some twisted partial action of G on B-1. The equality BgBg-1 B-g = B-g (for all g is an element of G) is one of the ingredients of the criteria, and if it holds and, moreover, B has enough local units, then it is shown that B is stably isomorphic to a crossed product by a twisted partial action of G. (c) 2008 Elsevier Inc. All rights reserved. Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) CNPq of Brazil Secretaria de Estado de Universidades e Investigacion del MEC, Espana Secretaria de Estado de Universidades e Investigacion del MEC, Espana |
Identificador |
JOURNAL OF ALGEBRA, v.320, n.8, p.3278-3310, 2008 0021-8693 http://producao.usp.br/handle/BDPI/30623 10.1016/j.jalgebra.2008.06.023 |
Idioma(s) |
eng |
Publicador |
ACADEMIC PRESS INC ELSEVIER SCIENCE |
Relação |
Journal of Algebra |
Direitos |
restrictedAccess Copyright ACADEMIC PRESS INC ELSEVIER SCIENCE |
Palavras-Chave | #partial action #crossed product #graded ring #C-ASTERISK-ALGEBRAS #MORITA EQUIVALENCE #PARTIAL REPRESENTATIONS #PARTIAL AUTOMORPHISMS #INVERSE-SEMIGROUPS #ENVELOPING ACTIONS #RINGS #BUNDLES #Mathematics |
Tipo |
article original article publishedVersion |