Crossed products by twisted partial actions and graded algebras


Autoria(s): DOKUCHAEV, M.; EXEL, R.; SIMON, J. J.
Contribuinte(s)

UNIVERSIDADE DE SÃO PAULO

Data(s)

20/10/2012

20/10/2012

2008

Resumo

For a twisted partial action e of a group G on an (associative non-necessarily unital) algebra A over a commutative unital ring k, the crossed product A x(Theta) G is proved to be associative. Given a G-graded k-algebra B = circle plus(g is an element of G) B-g with the mild restriction of homogeneous non-degeneracy, a criteria is established for B to be isomorphic to the crossed product B-1 x(Theta) G for some twisted partial action of G on B-1. The equality BgBg-1 B-g = B-g (for all g is an element of G) is one of the ingredients of the criteria, and if it holds and, moreover, B has enough local units, then it is shown that B is stably isomorphic to a crossed product by a twisted partial action of G. (c) 2008 Elsevier Inc. All rights reserved.

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

CNPq of Brazil

Secretaria de Estado de Universidades e Investigacion del MEC, Espana

Secretaria de Estado de Universidades e Investigacion del MEC, Espana

Identificador

JOURNAL OF ALGEBRA, v.320, n.8, p.3278-3310, 2008

0021-8693

http://producao.usp.br/handle/BDPI/30623

10.1016/j.jalgebra.2008.06.023

http://dx.doi.org/10.1016/j.jalgebra.2008.06.023

Idioma(s)

eng

Publicador

ACADEMIC PRESS INC ELSEVIER SCIENCE

Relação

Journal of Algebra

Direitos

restrictedAccess

Copyright ACADEMIC PRESS INC ELSEVIER SCIENCE

Palavras-Chave #partial action #crossed product #graded ring #C-ASTERISK-ALGEBRAS #MORITA EQUIVALENCE #PARTIAL REPRESENTATIONS #PARTIAL AUTOMORPHISMS #INVERSE-SEMIGROUPS #ENVELOPING ACTIONS #RINGS #BUNDLES #Mathematics
Tipo

article

original article

publishedVersion