Cálculo do Value at Risk (VaR) para o Ibovespa, pós crise de 2008, por meio dos modelos de heterocedasticidade condicional (GARCH) e de volatilidade estocástica (Local Scale Model - LSM)


Autoria(s): Santos, Julio Cesar Grimalt dos
Contribuinte(s)

Campos, Eduardo Lima

Gonçalves, Edson Daniel Lopes

Souza, Rafael Martins de

Data(s)

12/03/2015

12/03/2015

10/02/2015

Resumo

O objetivo deste estudo é propor a implementação de um modelo estatístico para cálculo da volatilidade, não difundido na literatura brasileira, o modelo de escala local (LSM), apresentando suas vantagens e desvantagens em relação aos modelos habitualmente utilizados para mensuração de risco. Para estimação dos parâmetros serão usadas as cotações diárias do Ibovespa, no período de janeiro de 2009 a dezembro de 2014, e para a aferição da acurácia empírica dos modelos serão realizados testes fora da amostra, comparando os VaR obtidos para o período de janeiro a dezembro de 2014. Foram introduzidas variáveis explicativas na tentativa de aprimorar os modelos e optou-se pelo correspondente americano do Ibovespa, o índice Dow Jones, por ter apresentado propriedades como: alta correlação, causalidade no sentido de Granger, e razão de log-verossimilhança significativa. Uma das inovações do modelo de escala local é não utilizar diretamente a variância, mas sim a sua recíproca, chamada de “precisão” da série, que segue uma espécie de passeio aleatório multiplicativo. O LSM captou todos os fatos estilizados das séries financeiras, e os resultados foram favoráveis a sua utilização, logo, o modelo torna-se uma alternativa de especificação eficiente e parcimoniosa para estimar e prever volatilidade, na medida em que possui apenas um parâmetro a ser estimado, o que representa uma mudança de paradigma em relação aos modelos de heterocedasticidade condicional.

The objective of this study is to propose the implementation of a statistical model to calculate the volatility not widespread in Brazilian literature, LSM, with its advantages and disadvantages compared to the models commonly used for risk measurement. To estimate the parameters will be used daily prices of Ibovespa in the period from January 2009 to December 2014, and to measure the empirical accuracy of the models out of sample tests will be performed, comparing the VaR obtained for the period from January to December 2014. Explanatory variables were introduced in an attempt to improve the models, and we chose to its corresponding American Ibovespa, the Dow Jones index, for presenting characteristics such as high correlation, causality in the Granger sense, and reason for significant log-likelihood. One of the local scale model innovation is not directly use the variance, but its reciprocal, called "precision" series, which follows a kind of multiplicative random walk. LSM captured all financial series of stylized facts, and the results were favorable to use, so the model becomes an efficient and economical alternative specification for estimating and predicting volatility, to the extent that only one parameter has to be estimated, which represents a paradigm shift in the models of conditional heteroscedasticity.

Identificador

http://hdl.handle.net/10438/13521

Idioma(s)

pt_BR

Palavras-Chave #Volatilidade #Modelo de escala local #Heterocedasticidade condicional #Value at Risk #Volatility #Local Scale Model #Heteroscedasticity #Risco (Economia) #Processo decisório #Mercado financeiro #Análise de séries temporais
Tipo

Dissertation