989 resultados para Problema de dimensionamento de lotes
Resumo:
This work presents a hybrid approach for the supplier selection problem in Supply Chain Management. We joined decision-making philosophy by researchers from business school and researchers from engineering in order to deal with the problem more extensively. We utilized traditional multicriteria decision-making methods, like AHP and TOPSIS, in order to evaluate alternatives according decision maker s preferences. The both techiniques were modeled by using definitions from the Fuzzy Sets Theory to deal with imprecise data. Additionally, we proposed a multiobjetive GRASP algorithm to perform an order allocation procedure between all pre-selected alternatives. These alternatives must to be pre-qualified on the basis of the AHP and TOPSIS methods before entering the LCR. Our allocation procedure has presented low CPU times for five pseudorandom instances, containing up to 1000 alternatives, as well as good values for all considered objectives. This way, we consider the proposed model as appropriate to solve the supplier selection problem in the SCM context. It can be used to help decision makers in reducing lead times, cost and risks in their supply chain. The proposed model can also improve firm s efficiency in relation to business strategies, according decision makers, even when a large number of alternatives must be considered, differently from classical models in purchasing literature
Resumo:
The objective in the facility location problem with limited distances is to minimize the sum of distance functions from the facility to the customers, but with a limit on each distance, after which the corresponding function becomes constant. The problem has applications in situations where the service provided by the facility is insensitive after a given threshold distance (eg. fire station location). In this work, we propose a global optimization algorithm for the case in which there are lower and upper limits on the numbers of customers that can be served
Resumo:
The importance of the airport sector in the development of a country refers to the need for studies on management of airports, to aid the process of decision making. In Brazil, growth in passenger demand is why investments in order to balance the capacity of an airport with air demand. Thus, the study aims to develop a model for Dynamic Systems able to assist airport management in Brazilian sizing subsystems an airport (Passenger Terminal, Runway and Patio). The methodology of this work consists in the steps of defining the problem, formulating the hypothesis dynamic building simulation model, and validation experiments. Finally, we examined the status of each subsystem in thirteen Brazilian airports in scenarios current, most likely and optimistic for air passenger demand
Resumo:
The Combinatorial Optimization is a basic area to companies who look for competitive advantages in the diverse productive sectors and the Assimetric Travelling Salesman Problem, which one classifies as one of the most important problems of this area, for being a problem of the NP-hard class and for possessing diverse practical applications, has increased interest of researchers in the development of metaheuristics each more efficient to assist in its resolution, as it is the case of Memetic Algorithms, which is a evolutionary algorithms that it is used of the genetic operation in combination with a local search procedure. This work explores the technique of Viral Infection in one Memetic Algorithms where the infection substitutes the mutation operator for obtaining a fast evolution or extinguishing of species (KANOH et al, 1996) providing a form of acceleration and improvement of the solution . For this it developed four variants of Viral Infection applied in the Memetic Algorithms for resolution of the Assimetric Travelling Salesman Problem where the agent and the virus pass for a symbiosis process which favored the attainment of a hybrid evolutionary algorithms and computational viable
Resumo:
The usual programs for load flow calculation were in general developped aiming the simulation of electric energy transmission, subtransmission and distribution systems. However, the mathematical methods and algorithms used by the formulations were based, in majority, just on the characteristics of the transmittion systems, which were the main concern focus of engineers and researchers. Though, the physical characteristics of these systems are quite different from the distribution ones. In the transmission systems, the voltage levels are high and the lines are generally very long. These aspects contribute the capacitive and inductive effects that appear in the system to have a considerable influence in the values of the interest quantities, reason why they should be taken into consideration. Still in the transmission systems, the loads have a macro nature, as for example, cities, neiborhoods, or big industries. These loads are, generally, practically balanced, what reduces the necessity of utilization of three-phase methodology for the load flow calculation. Distribution systems, on the other hand, present different characteristics: the voltage levels are small in comparison to the transmission ones. This almost annul the capacitive effects of the lines. The loads are, in this case, transformers, in whose secondaries are connected small consumers, in a sort of times, mono-phase ones, so that the probability of finding an unbalanced circuit is high. This way, the utilization of three-phase methodologies assumes an important dimension. Besides, equipments like voltage regulators, that use simultaneously the concepts of phase and line voltage in their functioning, need a three-phase methodology, in order to allow the simulation of their real behavior. For the exposed reasons, initially was developped, in the scope of this work, a method for three-phase load flow calculation in order to simulate the steady-state behaviour of distribution systems. Aiming to achieve this goal, the Power Summation Algorithm was used, as a base for developping the three phase method. This algorithm was already widely tested and approved by researchers and engineers in the simulation of radial electric energy distribution systems, mainly for single-phase representation. By our formulation, lines are modeled in three-phase circuits, considering the magnetic coupling between the phases; but the earth effect is considered through the Carson reduction. Its important to point out that, in spite of the loads being normally connected to the transformers secondaries, was considered the hypothesis of existence of star or delta loads connected to the primary circuit. To perform the simulation of voltage regulators, a new model was utilized, allowing the simulation of various types of configurations, according to their real functioning. Finally, was considered the possibility of representation of switches with current measuring in various points of the feeder. The loads are adjusted during the iteractive process, in order to match the current in each switch, converging to the measured value specified by the input data. In a second stage of the work, sensibility parameters were derived taking as base the described load flow, with the objective of suporting further optimization processes. This parameters are found by calculating of the partial derivatives of a variable in respect to another, in general, voltages, losses and reactive powers. After describing the calculation of the sensibility parameters, the Gradient Method was presented, using these parameters to optimize an objective function, that will be defined for each type of study. The first one refers to the reduction of technical losses in a medium voltage feeder, through the installation of capacitor banks; the second one refers to the problem of correction of voltage profile, through the instalation of capacitor banks or voltage regulators. In case of the losses reduction will be considered, as objective function, the sum of the losses in all the parts of the system. To the correction of the voltage profile, the objective function will be the sum of the square voltage deviations in each node, in respect to the rated voltage. In the end of the work, results of application of the described methods in some feeders are presented, aiming to give insight about their performance and acuity
Resumo:
The problems of combinatory optimization have involved a large number of researchers in search of approximative solutions for them, since it is generally accepted that they are unsolvable in polynomial time. Initially, these solutions were focused on heuristics. Currently, metaheuristics are used more for this task, especially those based on evolutionary algorithms. The two main contributions of this work are: the creation of what is called an -Operon- heuristic, for the construction of the information chains necessary for the implementation of transgenetic (evolutionary) algorithms, mainly using statistical methodology - the Cluster Analysis and the Principal Component Analysis; and the utilization of statistical analyses that are adequate for the evaluation of the performance of the algorithms that are developed to solve these problems. The aim of the Operon is to construct good quality dynamic information chains to promote an -intelligent- search in the space of solutions. The Traveling Salesman Problem (TSP) is intended for applications based on a transgenetic algorithmic known as ProtoG. A strategy is also proposed for the renovation of part of the chromosome population indicated by adopting a minimum limit in the coefficient of variation of the adequation function of the individuals, with calculations based on the population. Statistical methodology is used for the evaluation of the performance of four algorithms, as follows: the proposed ProtoG, two memetic algorithms and a Simulated Annealing algorithm. Three performance analyses of these algorithms are proposed. The first is accomplished through the Logistic Regression, based on the probability of finding an optimal solution for a TSP instance by the algorithm being tested. The second is accomplished through Survival Analysis, based on a probability of the time observed for its execution until an optimal solution is achieved. The third is accomplished by means of a non-parametric Analysis of Variance, considering the Percent Error of the Solution (PES) obtained by the percentage in which the solution found exceeds the best solution available in the literature. Six experiments have been conducted applied to sixty-one instances of Euclidean TSP with sizes of up to 1,655 cities. The first two experiments deal with the adjustments of four parameters used in the ProtoG algorithm in an attempt to improve its performance. The last four have been undertaken to evaluate the performance of the ProtoG in comparison to the three algorithms adopted. For these sixty-one instances, it has been concluded on the grounds of statistical tests that there is evidence that the ProtoG performs better than these three algorithms in fifty instances. In addition, for the thirty-six instances considered in the last three trials in which the performance of the algorithms was evaluated through PES, it was observed that the PES average obtained with the ProtoG was less than 1% in almost half of these instances, having reached the greatest average for one instance of 1,173 cities, with an PES average equal to 3.52%. Therefore, the ProtoG can be considered a competitive algorithm for solving the TSP, since it is not rare in the literature find PESs averages greater than 10% to be reported for instances of this size.
Resumo:
The metaheuristics techiniques are known to solve optimization problems classified as NP-complete and are successful in obtaining good quality solutions. They use non-deterministic approaches to generate solutions that are close to the optimal, without the guarantee of finding the global optimum. Motivated by the difficulties in the resolution of these problems, this work proposes the development of parallel hybrid methods using the reinforcement learning, the metaheuristics GRASP and Genetic Algorithms. With the use of these techniques, we aim to contribute to improved efficiency in obtaining efficient solutions. In this case, instead of using the Q-learning algorithm by reinforcement learning, just as a technique for generating the initial solutions of metaheuristics, we use it in a cooperative and competitive approach with the Genetic Algorithm and GRASP, in an parallel implementation. In this context, was possible to verify that the implementations in this study showed satisfactory results, in both strategies, that is, in cooperation and competition between them and the cooperation and competition between groups. In some instances were found the global optimum, in others theses implementations reach close to it. In this sense was an analyze of the performance for this proposed approach was done and it shows a good performance on the requeriments that prove the efficiency and speedup (gain in speed with the parallel processing) of the implementations performed
Resumo:
We revisit the problem of visibility, which is to determine a set of primitives potentially visible in a set of geometry data represented by a data structure, such as a mesh of polygons or triangles, we propose a solution for speeding up the three-dimensional visualization processing in applications. We introduce a lean structure , in the sense of data abstraction and reduction, which can be used for online and interactive applications. The visibility problem is especially important in 3D visualization of scenes represented by large volumes of data, when it is not worthwhile keeping all polygons of the scene in memory. This implies a greater time spent in the rendering, or is even impossible to keep them all in huge volumes of data. In these cases, given a position and a direction of view, the main objective is to determine and load a minimum ammount of primitives (polygons) in the scene, to accelerate the rendering step. For this purpose, our algorithm performs cutting primitives (culling) using a hybrid paradigm based on three known techniques. The scene is divided into a cell grid, for each cell we associate the primitives that belong to them, and finally determined the set of primitives potentially visible. The novelty is the use of triangulation Ja 1 to create the subdivision grid. We chose this structure because of its relevant characteristics of adaptivity and algebrism (ease of calculations). The results show a substantial improvement over traditional methods when applied separately. The method introduced in this work can be used in devices with low or no dedicated processing power CPU, and also can be used to view data via the Internet, such as virtual museums applications
Resumo:
The purpose of this study was to develop a pilot plant which the main goal is to emulate a flow peak pressure in a separation vessel. Effect similar that is caused by the production in a slug flow in production wells equipped with the artificial lift method plunger lift. The motivation for its development was the need to test in a plant on a smaller scale, a new technique developed to estimate the gas flow in production wells equipped with plunger lift. To develop it, studies about multiphase flow effects, operation methods of artificial lift in plunger lift wells, industrial instrumentation elements, control valves, vessel sizing separators and measurement systems were done. The methodology used was the definition of process flowcharts, its parameters and how the effects needed would be generated for the success of the experiments. Therefore, control valves, the design and construction of vessels and the acquisition of other equipment used were defined. One of the vessels works as a tank of compressed air that is connected to the separation vessel and generates pulses of gas controlled by a on/off valve. With the emulator system ready, several control experiments were made, being the control of peak flow pressure generation and the flow meter the main experiments, this way, it was confirmed the efficiency of the plant usage in the problem that motivated it. It was concluded that the system is capable of generate effects of flow with peak pressure in a primary separation vessel. Studies such as the estimation of gas flow at the exit of the vessel and several academic studies can be done and tested on a smaller scale and then applied in real plants, avoiding waste of time and money.
Resumo:
Neste trabalho é proposto um novo algoritmo online para o resolver o Problema dos k-Servos (PKS). O desempenho desta solução é comparado com o de outros algoritmos existentes na literatura, a saber, os algoritmos Harmonic e Work Function, que mostraram ser competitivos, tornando-os parâmetros de comparação significativos. Um algoritmo que apresente desempenho eficiente em relação aos mesmos tende a ser competitivo também, devendo, obviamente, se provar o referido fato. Tal prova, entretanto, foge aos objetivos do presente trabalho. O algoritmo apresentado para a solução do PKS é baseado em técnicas de aprendizagem por reforço. Para tanto, o problema foi modelado como um processo de decisão em múltiplas etapas, ao qual é aplicado o algoritmo Q-Learning, um dos métodos de solução mais populares para o estabelecimento de políticas ótimas neste tipo de problema de decisão. Entretanto, deve-se observar que a dimensão da estrutura de armazenamento utilizada pela aprendizagem por reforço para se obter a política ótima cresce em função do número de estados e de ações, que por sua vez é proporcional ao número n de nós e k de servos. Ao se analisar esse crescimento (matematicamente, ) percebe-se que o mesmo ocorre de maneira exponencial, limitando a aplicação do método a problemas de menor porte, onde o número de nós e de servos é reduzido. Este problema, denominado maldição da dimensionalidade, foi introduzido por Belmann e implica na impossibilidade de execução de um algoritmo para certas instâncias de um problema pelo esgotamento de recursos computacionais para obtenção de sua saída. De modo a evitar que a solução proposta, baseada exclusivamente na aprendizagem por reforço, seja restrita a aplicações de menor porte, propõe-se uma solução alternativa para problemas mais realistas, que envolvam um número maior de nós e de servos. Esta solução alternativa é hierarquizada e utiliza dois métodos de solução do PKS: a aprendizagem por reforço, aplicada a um número reduzido de nós obtidos a partir de um processo de agregação, e um método guloso, aplicado aos subconjuntos de nós resultantes do processo de agregação, onde o critério de escolha do agendamento dos servos é baseado na menor distância ao local de demanda
Resumo:
In multi-robot systems, both control architecture and work strategy represent a challenge for researchers. It is important to have a robust architecture that can be easily adapted to requirement changes. It is also important that work strategy allows robots to complete tasks efficiently, considering that robots interact directly in environments with humans. In this context, this work explores two approaches for robot soccer team coordination for cooperative tasks development. Both approaches are based on a combination of imitation learning and reinforcement learning. Thus, in the first approach was developed a control architecture, a fuzzy inference engine for recognizing situations in robot soccer games, a software for narration of robot soccer games based on the inference engine and the implementation of learning by imitation from observation and analysis of others robotic teams. Moreover, state abstraction was efficiently implemented in reinforcement learning applied to the robot soccer standard problem. Finally, reinforcement learning was implemented in a form where actions are explored only in some states (for example, states where an specialist robot system used them) differently to the traditional form, where actions have to be tested in all states. In the second approach reinforcement learning was implemented with function approximation, for which an algorithm called RBF-Sarsa($lambda$) was created. In both approaches batch reinforcement learning algorithms were implemented and imitation learning was used as a seed for reinforcement learning. Moreover, learning from robotic teams controlled by humans was explored. The proposal in this work had revealed efficient in the robot soccer standard problem and, when implemented in other robotics systems, they will allow that these robotics systems can efficiently and effectively develop assigned tasks. These approaches will give high adaptation capabilities to requirements and environment changes.
Resumo:
This work presents in a simulated environment, to analyze the length of cable needed counterweight connected to ground rod, able to avoid the phenomenon of flashover return, back flashover, the insulator chains of transmission lines consisting of concrete structures when they are subjected to lightning standardized regarding certain resistivity values of some kinds of soil and geometric arrangements of disposal of grounding systems structures
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Com o objetivo de verificar o efeito da desidratação sobre a germinação e o vigor de sementes de pupunheira inerme (Bactris gasipaes Kunth), quatro lotes de sementes, colhidos nas localidades de Yurimaguas, Peru; Camamu e Piraí do Norte, BA e Pindorama, SP, foram submetidos à secagem em câmara seca a partir das testemunhas não desidratadas, retirando-se amostras a cada 24 horas. O efeito da desidratação sobre a qualidade das sementes foi avaliado por meio de teste de germinação (184 dias da semeadura, em vermiculita, 20-30ºC), primeira contagem de germinação (36 dias), velocidade de germinação e teor de água das sementes. Comprovou-se que sementes dessa espécie são sensíveis à desidratação, com germinação inicial alta (59 a 84%) quando não desidratadas (47 a 38% de umidade inicial). Teores de água abaixo da faixa de 28 a 23% reduziram significativamente a germinação e o vigor. Todas as sementes com teores de umidade abaixo de 15% (lotes 2 e 4) e 13% (lotes 1 e 3) morreram.
Resumo:
Os testes de vigor e o teste de germinação são componentes essenciais no controle de qualidade das empresas de produção de sementes. Com o objetivo de verificar a eficiência de diferentes testes de vigor e de variações de suas metodologias na avaliação da qualidade de sementes de couve-brócolos visando diferenciação de lotes e previsão de emergência em bandeja, cinco lotes de sementes do híbrido Flórida foram submetidos aos seguintes testes: germinação; primeira contagem de germinação; emissão de raiz primária (após 48, 56, 72, 80 e 96 h após a instalação do teste de germinação); emergência de plântulas em substrato; envelhecimento acelerado com água (1g de sementes mantidas a 41ºC por 48 e 72 h a 100%UR); envelhecimento acelerado com solução saturada de sal (mesmo procedimento do item anterior, porém usando solução de NaCl, 40% e 76%UR); condutividade elétrica (50 sementes em 25 mL de água destilada a 25ºC e leituras após 2, 4, 6, 8 e 24 h). Todos os testes apresentaram correlação significativa com a porcentagem de emergência de plântulas em substrato, a 1% de probabilidade. Os testes de envelhecimento acelerado com solução saturada de sal por 48 h e de condutividade elétrica após 8 e 24 h de embebição foram eficientes e tiveram resultados semelhantes aos da emergência em substrato. Os testes da primeira contagem de germinação, emissão da raiz primária após 56 h e envelhecimento acelerado com solução saturada de sal por 72 h, apresentaram-se mais eficientes que a emergência de plântulas em substrato na diferenciação do vigor dos lotes.