941 resultados para Characteristic equations
Resumo:
In this work the numerical coupling of thermal and electric network models with model equations for optoelectronic semiconductor devices is presented. Modified nodal analysis (MNA) is applied to model electric networks. Thermal effects are modeled by an accompanying thermal network. Semiconductor devices are modeled by the energy-transport model, that allows for thermal effects. The energy-transport model is expandend to a model for optoelectronic semiconductor devices. The temperature of the crystal lattice of the semiconductor devices is modeled by the heat flow eqaution. The corresponding heat source term is derived under thermodynamical and phenomenological considerations of energy fluxes. The energy-transport model is coupled directly into the network equations and the heat flow equation for the lattice temperature is coupled directly into the accompanying thermal network. The coupled thermal-electric network-device model results in a system of partial differential-algebraic equations (PDAE). Numerical examples are presented for the coupling of network- and one-dimensional semiconductor equations. Hybridized mixed finite elements are applied for the space discretization of the semiconductor equations. Backward difference formluas are applied for time discretization. Thus, positivity of charge carrier densities and continuity of the current density is guaranteed even for the coupled model.
Resumo:
This thesis deals with the study of optimal control problems for the incompressible Magnetohydrodynamics (MHD) equations. Particular attention to these problems arises from several applications in science and engineering, such as fission nuclear reactors with liquid metal coolant and aluminum casting in metallurgy. In such applications it is of great interest to achieve the control on the fluid state variables through the action of the magnetic Lorentz force. In this thesis we investigate a class of boundary optimal control problems, in which the flow is controlled through the boundary conditions of the magnetic field. Due to their complexity, these problems present various challenges in the definition of an adequate solution approach, both from a theoretical and from a computational point of view. In this thesis we propose a new boundary control approach, based on lifting functions of the boundary conditions, which yields both theoretical and numerical advantages. With the introduction of lifting functions, boundary control problems can be formulated as extended distributed problems. We consider a systematic mathematical formulation of these problems in terms of the minimization of a cost functional constrained by the MHD equations. The existence of a solution to the flow equations and to the optimal control problem are shown. The Lagrange multiplier technique is used to derive an optimality system from which candidate solutions for the control problem can be obtained. In order to achieve the numerical solution of this system, a finite element approximation is considered for the discretization together with an appropriate gradient-type algorithm. A finite element object-oriented library has been developed to obtain a parallel and multigrid computational implementation of the optimality system based on a multiphysics approach. Numerical results of two- and three-dimensional computations show that a possible minimum for the control problem can be computed in a robust and accurate manner.
Resumo:
For an infinite field F, we study the integral relationship between the Bloch group B_2(F) and the higher Chow group CH^2(F,3) by proving some relations corresponding to the functional equations of the dilogarithm. As a second result, the groups involved in Suslin’s exact sequence 0 → Tor^1(F^× ,F^×)∼ → CH^2(F,3) → B_2(F) → 0 are identified with homology groups of the cycle complex Z^2(F,•) computing Bloch’s higher Chow groups. Using these results, we give explicit cycles in motivic cohomology generating the integral motivic cohomology groups of some specific number fields and determine whether a given cycle in the Chow group already lives in one of the other groups of Suslin’s sequence. In principle, this enables us to find a presentation of the codimension two Chow group of an arbitrary number field. Finally, we also prove some relations in the higher Chow groups of codimension three modulo 2-torsion coming from relations in the higher Bloch group B_3(F) modulo 2-torsion. Further, we can prove a series of relations in CH^ 3(Q(zeta_p),5) for a primitive pth root of unity zeta_p.
Resumo:
Sono indagate le implicazioni teoriche e sperimentali derivanti dall'assunzione, nella teoria della relatività speciale, di un criterio di sincronizzazione (detta assoluta) diverso da quello standard. La scelta della sincronizzazione assoluta è giustificata da alcune considerazioni di carattere epistemologico sullo status di fenomeni quali la contrazione delle lunghezze e la dilatazione del tempo. Oltre che a fornire una diversa interpretazione, la sincronizzazione assoluta rappresenta una estensione del campo di applicazione della relatività speciale in quanto può essere attuata anche in sistemi di riferimento accelerati. Questa estensione consente di trattare in maniera unitaria i fenomeni sia in sistemi di riferimento inerziali che accelerati. L'introduzione della sincronizzazione assoluta implica una modifica delle trasformazioni di Lorentz. Una caratteristica di queste nuove trasformazioni (dette inerziali) è che la trasformazione del tempo è indipendente dalle coordinate spaziali. Le trasformazioni inerziali sono ottenute nel caso generale tra due sistemi di riferimento aventi velocità (assolute) u1 e u2 comunque orientate. Viene mostrato che le trasformazioni inerziali possono formare un gruppo pur di prendere in considerazione anche riferimenti non fisicamente realizzabili perché superluminali. È analizzato il moto rigido secondo Born di un corpo esteso considerando la sincronizzazione assoluta. Sulla base delle trasformazioni inerziali si derivano le trasformazioni per i campi elettromagnetici e le equazioni di questi campi (che sostituiscono le equazioni di Maxwell). Si mostra che queste equazioni contengono soluzioni in assenza di cariche che si propagano nello spazio come onde generalmente anisotrope in accordo con quanto previsto dalle trasformazioni inerziali. L'applicazione di questa teoria elettromagnetica a sistemi accelerati mostra l'esistenza di fenomeni mai osservati che, pur non essendo in contraddizione con la relatività standard, ne forzano l'interpretazione. Viene proposto e descritto un esperimento in cui uno di questi fenomeni è misurabile.
Resumo:
In this Thesis we consider a class of second order partial differential operators with non-negative characteristic form and with smooth coefficients. Main assumptions on the relevant operators are hypoellipticity and existence of a well-behaved global fundamental solution. We first make a deep analysis of the L-Green function for arbitrary open sets and of its applications to the Representation Theorems of Riesz-type for L-subharmonic and L-superharmonic functions. Then, we prove an Inverse Mean value Theorem characterizing the superlevel sets of the fundamental solution by means of L-harmonic functions. Furthermore, we establish a Lebesgue-type result showing the role of the mean-integal operator in solving the homogeneus Dirichlet problem related to L in the Perron-Wiener sense. Finally, we compare Perron-Wiener and weak variational solutions of the homogeneous Dirichlet problem, under specific hypothesis on the boundary datum.
Resumo:
After briefly discuss the natural homogeneous Lie group structure induced by Kolmogorov equations in chapter one, we define an intrinsic version of Taylor polynomials and Holder spaces in chapter two. We also compare our definition with others yet known in literature. In chapter three we prove an analogue of Taylor formula, that is an estimate of the remainder in terms of the homogeneous metric.
Resumo:
Il trattamento numerico dell'equazione di convezione-diffusione con le relative condizioni al bordo, comporta la risoluzione di sistemi lineari algebrici di grandi dimensioni in cui la matrice dei coefficienti è non simmetrica. Risolutori iterativi basati sul sottospazio di Krylov sono ampiamente utilizzati per questi sistemi lineari la cui risoluzione risulta particolarmente impegnativa nel caso di convezione dominante. In questa tesi vengono analizzate alcune strategie di precondizionamento, atte ad accelerare la convergenza di questi metodi iterativi. Vengono confrontati sperimentalmente precondizionatori molto noti come ILU e iterazioni di tipo inner-outer flessibile. Nel caso in cui i coefficienti del termine di convezione siano a variabili separabili, proponiamo una nuova strategia di precondizionamento basata sull'approssimazione, mediante equazione matriciale, dell'operatore differenziale di convezione-diffusione. L'azione di questo nuovo precondizionatore sfrutta in modo opportuno recenti risolutori efficienti per equazioni matriciali lineari. Vengono riportati numerosi esperimenti numerici per studiare la dipendenza della performance dei diversi risolutori dalla scelta del termine di convezione, e dai parametri di discretizzazione.
Resumo:
In vielen Teilgebieten der Mathematik ist es w"{u}nschenswert, die Monodromiegruppe einer homogenen linearen Differenzialgleichung zu verstehen. Es sind nur wenige analytische Methoden zur Berechnung dieser Gruppe bekannt, daher entwickeln wir im ersten Teil dieser Arbeit eine numerische Methode zur Approximation ihrer Erzeuger.rnIm zweiten Abschnitt fassen wir die Grundlagen der Theorie der Uniformisierung Riemannscher Fl"achen und die der arithmetischen Fuchsschen Gruppen zusammen. Auss erdem erkl"aren wir, wie unsere numerische Methode bei der Bestimmung von uniformisierenden Differenzialgleichungen dienlich sein kann. F"ur arithmetische Fuchssche Gruppen mit zwei Erzeugern erhalten wir lokale Daten und freie Parameter von Lam'{e} Gleichungen, welche die zugeh"origen Riemannschen Fl"achen uniformisieren. rnIm dritten Teil geben wir einen kurzen Abriss zur homologischen Spiegelsymmetrie und f"uhren die $widehat{Gamma}$-Klasse ein. Wir erkl"aren wie diese genutzt werden kann, um eine Hodge-theoretische Version der Spiegelsymmetrie f"ur torische Varit"aten zu beweisen. Daraus gewinnen wir Vermutungen "uber die Monodromiegruppe $M$ von Picard-Fuchs Gleichungen von gewissen Familien $f:mathcal{X}rightarrow bbp^1$ von $n$-dimensionalen Calabi-Yau Variet"aten. Diese besagen erstens, dass bez"uglich einer nat"urlichen Basis die Monodromiematrizen in $M$ Eintr"age aus dem K"orper $bbq(zeta(2j+1)/(2 pi i)^{2j+1},j=1,ldots,lfloor (n-1)/2 rfloor)$ haben. Und zweitens, dass sich topologische Invarianten des Spiegelpartners einer generischen Faser von $f:mathcal{X}rightarrow bbp^1$ aus einem speziellen Element von $M$ rekonstruieren lassen. Schliess lich benutzen wir die im ersten Teil entwickelten Methoden zur Verifizierung dieser Vermutungen, vornehmlich in Hinblick auf Dimension drei. Dar"uber hinaus erstellen wir eine Liste von Kandidaten topologischer Invarianten von vermutlich existierenden dreidimensionalen Calabi-Yau Variet"aten mit $h^{1,1}=1$.
Resumo:
Zusammenfassung In der vorliegenden Arbeit besch¨aftige ich mich mit Differentialgleichungen von Feynman– Integralen. Ein Feynman–Integral h¨angt von einem Dimensionsparameter D ab und kann f¨ur ganzzahlige Dimension als projektives Integral dargestellt werden. Dies ist die sogenannte Feynman–Parameter Darstellung. In Abh¨angigkeit der Dimension kann ein solches Integral divergieren. Als Funktion in D erh¨alt man eine meromorphe Funktion auf ganz C. Ein divergentes Integral kann also durch eine Laurent–Reihe ersetzt werden und dessen Koeffizienten r¨ucken in das Zentrum des Interesses. Diese Vorgehensweise wird als dimensionale Regularisierung bezeichnet. Alle Terme einer solchen Laurent–Reihe eines Feynman–Integrals sind Perioden im Sinne von Kontsevich und Zagier. Ich beschreibe eine neue Methode zur Berechnung von Differentialgleichungen von Feynman– Integralen. ¨ Ublicherweise verwendet man hierzu die sogenannten ”integration by parts” (IBP)– Identit¨aten. Die neue Methode verwendet die Theorie der Picard–Fuchs–Differentialgleichungen. Im Falle projektiver oder quasi–projektiver Variet¨aten basiert die Berechnung einer solchen Differentialgleichung auf der sogenannten Griffiths–Dwork–Reduktion. Zun¨achst beschreibe ich die Methode f¨ur feste, ganzzahlige Dimension. Nach geeigneter Verschiebung der Dimension erh¨alt man direkt eine Periode und somit eine Picard–Fuchs–Differentialgleichung. Diese ist inhomogen, da das Integrationsgebiet einen Rand besitzt und daher nur einen relativen Zykel darstellt. Mit Hilfe von dimensionalen Rekurrenzrelationen, die auf Tarasov zur¨uckgehen, kann in einem zweiten Schritt die L¨osung in der urspr¨unglichen Dimension bestimmt werden. Ich beschreibe außerdem eine Methode, die auf der Griffiths–Dwork–Reduktion basiert, um die Differentialgleichung direkt f¨ur beliebige Dimension zu berechnen. Diese Methode ist allgemein g¨ultig und erspart Dimensionswechsel. Ein Erfolg der Methode h¨angt von der M¨oglichkeit ab, große Systeme von linearen Gleichungen zu l¨osen. Ich gebe Beispiele von Integralen von Graphen mit zwei und drei Schleifen. Tarasov gibt eine Basis von Integralen an, die Graphen mit zwei Schleifen und zwei externen Kanten bestimmen. Ich bestimme Differentialgleichungen der Integrale dieser Basis. Als wichtigstes Beispiel berechne ich die Differentialgleichung des sogenannten Sunrise–Graphen mit zwei Schleifen im allgemeinen Fall beliebiger Massen. Diese ist f¨ur spezielle Werte von D eine inhomogene Picard–Fuchs–Gleichung einer Familie elliptischer Kurven. Der Sunrise–Graph ist besonders interessant, weil eine analytische L¨osung erst mit dieser Methode gefunden werden konnte, und weil dies der einfachste Graph ist, dessen Master–Integrale nicht durch Polylogarithmen gegeben sind. Ich gebe außerdem ein Beispiel eines Graphen mit drei Schleifen. Hier taucht die Picard–Fuchs–Gleichung einer Familie von K3–Fl¨achen auf.
Resumo:
In this study more than 450 natural sapphire samples (most of basaltic type) collected from 19 different areas were examined. They are from Dak Nong, Dak Lak, Quy Chau, two unknown sources from the north (Vietnam); Bo Ploi, Khao Ploi Waen (Thailand); Ban Huay Sai (Laos); Australia; Shandong (China); Andapa, Antsirabe, Nosibe (Madagascar); Ballapana (Sri Lanka); Brazil; Russia; Colombia; Tansania and Malawi. rnThe samples were studied on internal characteristics, chemical compositions, Raman-, luminescence-, Fourier transform infrared (FTIR)-, and ultraviolet-visible-near infrared (UV-Vis-NIR)- spectroscopy. The internal features of these sapphire samples were observed and identified by gemological microscope, con focal micro Raman and FTIR spectroscopy. The major and minor elements of the samples were determined by electron probe microanalysis (EPMA) and the trace elements by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). rnThe structural spectra of sapphire were investigated by con focal Raman spectroscopy. The FTIR spectroscopy was used to study the vibration modes of OH-groups and also to determine hydrous mineral inclusions in sapphire. The UV-Vis-NIR absorption spectroscopy was used to analyze the cause of sapphire color. rnNatural sapphires contain many types of mineral inclusions. Typically, they are iron-containing inclusions like goethite, ilmenite, hematite, magnetite or silicate minerals commonly feldspar, and often observed in sapphires from Asia countries, like Dak Nong, Dak Lak in the south of Vietnam, Ban Huay Sai (Laos), Khao Ploi Waen and Bo Ploi (Thailand) or Shandong (China). Meanwhile, CO2-diaspore inclusions are normally found in sapphires from Tansania, Colombia, or the north of Vietnam like Quy Chau. rnIron is the most dominant element in sapphire, up to 1.95 wt.% Fe2O3 measured by EPMA and it affects spectral characteristics of sapphire.rnThe Raman spectra of sapphire contain seven peaks (2A1g + 5Eg). Two peaks at about 418.3 cm-1 and 577.7 cm-1 are influenced by high iron content. These two peaks shift towards smaller wavenumbers corresponding to increasing iron content. This shift is showed by two equations y(418.3)=418.29-0.53x andy(577.7)=577.96-0.75x, in which y is peak position (cm-1) and x is Fe2O3 content (wt.%). By exploiting two these equations one can estimate the Fe2O3 contents of sapphire or corundum by identifying the respective Raman peak positions. Determining the Fe2O3 content in sapphire can help to distinguish sapphires from different origins, e.g. magmatic and metamorphic sapphire. rnThe luminescence of sapphire is characterized by two R-lines: R1 at about 694 nm and R2 at about 692 nm. This characteristic is also influenced by high iron content. The peak positions of two R-lines shift towards to smaller wavelengths corresponding to increasing of iron content. This correlation is showed by two equations y(R_2 )=692.86-0.049x and y(R_1 )=694.29-0.047x, in which y is peak position (nm) of respective R-lines and x is Fe2O3 content (wt.%). Two these equations can be applied to estimate the Fe2O3 content of sapphire and help to separate sapphires from different origins. The luminescence is also applied for determination of the remnant pressure or stress around inclusions in Cr3+-containing corundum by calibrating a 0-pressure position in experimental techniques.rnThe infrared spectra show the presence of vibrations originating from OH-groups and hydrous mineral inclusions in the range of 2500-4000 cm-1. Iron has also an effect upon the main and strongest peak at about 3310 cm-1. The 3310 cm-1 peak is shifted to higher wavenumber when iron content increases. This relationship is expressed by the equation y(3310)=0.92x+3309.17, in which y is peak position of the 3310 cm-1 and x is Fe2O3 content (wt.%). Similar to the obtained results in Raman and luminescence spectra, this expression can be used to estimate the Fe2O3 content and separate sapphires from different origins. rnThe UV-Vis-NIR absorption spectra point out the strong and sharp peaks at about 377, 387, and 450 nm related to dispersed Fe3+, a broad band around 557 and 600 nm related to intervalence charge transfer (IVCT) Fe2+/Ti4+, and a broader band around 863 nm related to IVCT of Fe2+/Fe3+. rnGenerally, sapphires from different localities were completely investigated on internal features, chemical compounds, and solid spectral characteristics. The results in each part contribute for identifying the iron content and separate sapphires from different localities order origins. rn
Resumo:
Liquids and gasses form a vital part of nature. Many of these are complex fluids with non-Newtonian behaviour. We introduce a mathematical model describing the unsteady motion of an incompressible polymeric fluid. Each polymer molecule is treated as two beads connected by a spring. For the nonlinear spring force it is not possible to obtain a closed system of equations, unless we approximate the force law. The Peterlin approximation replaces the length of the spring by the length of the average spring. Consequently, the macroscopic dumbbell-based model for dilute polymer solutions is obtained. The model consists of the conservation of mass and momentum and time evolution of the symmetric positive definite conformation tensor, where the diffusive effects are taken into account. In two space dimensions we prove global in time existence of weak solutions. Assuming more regular data we show higher regularity and consequently uniqueness of the weak solution. For the Oseen-type Peterlin model we propose a linear pressure-stabilized characteristics finite element scheme. We derive the corresponding error estimates and we prove, for linear finite elements, the optimal first order accuracy. Theoretical error of the pressure-stabilized characteristic finite element scheme is confirmed by a series of numerical experiments.
Resumo:
In questa tesi si mostrano alcune applicazioni degli integrali ellittici nella meccanica Hamiltoniana, allo scopo di risolvere i sistemi integrabili. Vengono descritte le funzioni ellittiche, in particolare la funzione ellittica di Weierstrass, ed elenchiamo i tipi di integrali ellittici costruendoli dalle funzioni di Weierstrass. Dopo aver considerato le basi della meccanica Hamiltoniana ed il teorema di Arnold Liouville, studiamo un esempio preso dal libro di Moser-Integrable Hamiltonian Systems and Spectral Theory, dove si prendono in considerazione i sistemi integrabili lungo la geodetica di un'ellissoide, e il sistema di Von Neumann. In particolare vediamo che nel caso n=2 abbiamo un integrale ellittico.
Resumo:
Reproductive failure, determined as recurrent spontaneous abortions (RSA) or recurrent implantation failure (RIF) in women is not well understood. Several factors, including embryo quality, and cellular and molecular changes in endometrium may contribute to the insufficient feto-maternal interaction resulting in reproductive failure. Prior clinical studies suggest an inadequate endometrial growth and development of the endometrium, leading to a lesser endometrial thickness.