Potential Analysis for Hypoelliptic Second Order PDEs with Nonnegative Characteristic Form
Contribuinte(s) |
Lanconelli, Ermanno |
---|---|
Data(s) |
28/05/2015
|
Resumo |
In this Thesis we consider a class of second order partial differential operators with non-negative characteristic form and with smooth coefficients. Main assumptions on the relevant operators are hypoellipticity and existence of a well-behaved global fundamental solution. We first make a deep analysis of the L-Green function for arbitrary open sets and of its applications to the Representation Theorems of Riesz-type for L-subharmonic and L-superharmonic functions. Then, we prove an Inverse Mean value Theorem characterizing the superlevel sets of the fundamental solution by means of L-harmonic functions. Furthermore, we establish a Lebesgue-type result showing the role of the mean-integal operator in solving the homogeneus Dirichlet problem related to L in the Perron-Wiener sense. Finally, we compare Perron-Wiener and weak variational solutions of the homogeneous Dirichlet problem, under specific hypothesis on the boundary datum. |
Formato |
application/pdf |
Identificador |
http://amsdottorato.unibo.it/6860/1/abbondanza_beatrice_tesi.pdf urn:nbn:it:unibo-14996 Abbondanza, Beatrice (2015) Potential Analysis for Hypoelliptic Second Order PDEs with Nonnegative Characteristic Form, [Dissertation thesis], Alma Mater Studiorum Università di Bologna. Dottorato di ricerca in Matematica <http://amsdottorato.unibo.it/view/dottorati/DOT269/>, 26 Ciclo. DOI 10.6092/unibo/amsdottorato/6860. |
Idioma(s) |
en |
Publicador |
Alma Mater Studiorum - Università di Bologna |
Relação |
http://amsdottorato.unibo.it/6860/ |
Direitos |
info:eu-repo/semantics/openAccess |
Palavras-Chave | #MAT/05 Analisi matematica |
Tipo |
Tesi di dottorato NonPeerReviewed |