916 resultados para Fluorescent conjugation
Resumo:
Targeted nanomedicines offer a strategy for greatly enhancing accumulation of a therapeutic within a specific tissue in animals. In this study, we report on the comparative targeting efficiency toward prostate-specific membrane antigen (PSMA) of a number of different ligands that are covalently attached by the same chemistry to a polymeric nanocarrier. The targeting ligands included a small molecule (glutamate urea), a peptide ligand, and a monoclonal antibody (J591). A hyperbranched polymer (HBP) was utilized as the nanocarrier and contained a fluorophore for tracking/analysis, whereas the pendant functional chain-ends provided a handle for ligand conjugation. Targeting efficiency of each ligand was assessed in vitro using flow cytometry and confocal microscopy to compare degree of binding and internalization of the HBPs by human prostate cancer (PCa) cell lines with different PSMA expression status (PC3-PIP (PSMA+) and PC3-FLU (PSMA−). The peptide ligand was further investigated in vivo, in which BALB/c nude mice bearing subcutaneous PC3-PIP and PC3-FLU PCa tumors were injected intravenously with the HBP-peptide conjugate and assessed by fluorescence imaging. Enhanced accumulation in the tumor tissue of PC3-PIP compared to PC3-FLU highlighted the applicability of this system as a future imaging and therapeutic delivery vehicle.
Resumo:
The search and the probe of the fundamental properties of Higgs boson(s) and, in particular, the determination of their charge conjugation and parity (CP) quantum numbers, are the main tasks of future high-energy colliders. We demonstrate that the CP properties of a standard model-like Higgs particle can be unambiguously assessed by measuring just the total cross section and the top polarization in associated Higgs boson production with top quark pairs in e(+)e(-) collisions.
Resumo:
Once the ugly duckling of the lighting world, the fluorescent bulb recently has become something of an eco-darling thanks to its energy efficiency. Whereas a standard off-the-shelf incandescent bulb devotes only about five percent of its total electrical consumption to produce visible light (the remainder is released in heat), fluorescent lighting employs an entirely different process (it radiates rather than burns) that is four to six times more efficient. Fluorescents are indisputably superior in performance, but up to 5 milligrams of mercury, a hazardous trace metal, is included in the manufacture of each lamp
Resumo:
In quantum theory, symmetry has to be defined necessarily in terms of the family of unit rays, the state space. The theorem of Wigner asserts that a symmetry so defined at the level of rays can always be lifted into a linear unitary or an antilinear antiunitary operator acting on the underlying Hilbert space. We present two proofs of this theorem which are both elementary and economical. Central to our proofs is the recognition that a given Wigner symmetry can, by post-multiplication by a unitary symmetry, be taken into either the identity or complex conjugation. Our analysis often focuses on the behaviour of certain two-dimensional subspaces of the Hilbert space under the action of a given Wigner symmetry, but the relevance of this behaviour to the larger picture of the whole Hilbert space is made transparent at every stage.
Resumo:
PURPOSE. To understand the molecular features underlying autosomal dominant congenital cataracts caused by the deletion mutations W156X in human gamma D-crystallin and W157X in human gamma C-crystallin. METHODS. Normal and mutant cDNAs (with the enhanced green fluorescent protein [EGFP] tag in the front) were cloned into the pEGFP-C1 vector, transfected into various cell lines, and observed under a confocal microscope for EGFP fluorescence. Normal and W156X gamma D cDNAs were also cloned into the pET21a(+) vector, and the recombinant proteins were overexpressed in the BL-21(DE3) pLysS strain of Escherichia coli, purified, and isolated. The conformational features, structural stability, and solubility in aqueous solution of the mutant protein were compared with those of the wild type using spectroscopic methods. Comparative molecular modeling was performed to provide additional structural information. RESULTS. Transfection of the EGFP-tagged mutant cDNAs into several cell lines led to the visualization of aggregates, whereas that of wild-type cDNAs did not. Turning to the properties of the expressed proteins, the mutant molecules show remarkable reduction in solubility. They also seem to have a greater degree of surface hydrophobicity than the wild-type molecules, most likely accounting for self-aggregation. Molecular modeling studies support these features. CONCLUSIONS. The deletion of C-terminal 18 residues of human gamma C-and gamma D-crystallins exposes the side chains of several hydrophobic residues in the sequence to the solvent, causing the molecule to self-aggregate. This feature appears to be reflected in situ on the introduction of the mutants in human lens epithelial cells.
Resumo:
A mannose-binding lectin (RVL) was purified from the tubers of Remusatia vivipara, a monocot plant by single-step affinity chromatography on asialofetuin-Sepharose 4B. RVL agglutinated only rabbit erythrocytes and was inhibited by mucin, asialomucin, asialofetuin and thyroglobulin. Lectin activity was stable up to 80A degrees C and under wide range of pH (2.0-9.3). SDS-PAGE and gel filtration results showed the lectin is a homotetramer of Mr 49.5 kDa, but MALDI analysis showed two distinct peaks corresponding to subunit mass of 12 kDa and 12.7 kDa. Also the N-terminal sequencing gave two different sequences indicating presence of two polypeptide chains. Cloning of RVL gene indicated posttranslational cleavage of RVL precursor into two mature polypeptides of 116 and 117 amino-acid residues. Dynamic light scattering (DLS) and gel filtration studies together confirmed the homogeneity of the purified lectin and supported RVL as a dimer with Mr 49.5 kDa derived from single polypeptide precursor of 233 amino acids. Purified RVL exerts potent nematicidal activity on Meloidogyne incognita, a root knot nematode. Fluorescent confocal microscopic studies demonstrated the binding of RVL to specific regions of the alimentary-tract and exhibited a potent toxic effect on M. incognita. RVL-mucin complex failed to interact with the gut confirming the receptor mediated lectin interaction. Very high mortality (88%) rate was observed at lectin concentration as low as 30 A mu g/ml, suggesting its potential application in the development of nematode resistant transgenic-crops.
Resumo:
Bis-bidentate Schiff base ligand L and its two mononuclear complexes [CuL(CH3CN)(2)]ClO4 (1)and [CuL(PPh3)(2)]ClO4 (2)have been prepared and thoroughly characterized by elemental analyses, IR, UV-Vis, NMR spectroscopy and X-ray diffraction analysis. In both the complexes the metal ion auxiliaries adopt tetrahedral coordination environment. Their reactivity, electrochemical and photophysical behavior have been studied. Complex 1 shows reversible Cu-II/I couple with potential 0.74 V versus Ag/AgCl in CH2Cl2. At room temperature L is weakly fluorescent in CH2Cl2, however in Cu(I)complexes 1 and 2 the emission in quenched. (C) 2009 Elsevier B. V. All rights reserved.
Resumo:
The nature of binding of 7-nitrobenz-2-oxa-1,3-diazol-4-yl-colcemid (NBD-colcemid), an environment-sensitive fluorescent analogue of colchicine, to tubulin was tested. This article reports the first fluorometric study where two types of binding site of colchincine analogue on tubulin were detected. Binding of NBD-colcemid to one of these sites equilibrates slsowly. NBD-colcemid competes with colchicine for this site. Binding of NBD-colcemid to this site also causes inhibition of tubulin self-assembly. In contrast, NBD-colcemid binding to the other site is characterised by rapid equilibration and lack of competition with colchicine. Nevertheless, binding to this site is highly specific for the cholchicine nucleus, as alkyl-NBD analogues have no significant binding activity. Fast-reaction-kinetic studies gave 1.76 × 105 M–1 s–1 for the association and 0.79 s–1 for the dissociation rate constants for the binding of NBD-colcemid to the fast site of tubulin. The association rate constants for the two phases of the slow site are 0.016 × 10–4 M–1 s–1 and 3.5 × 10–4 M–1 respectively. These two sites may be related to the two sites of colchicine reported earlier, with binding characteristics altered by the increased hydrophobic nature of NBD-colcemid.
Resumo:
Sulfotransferases (SULTs) and UDP-glucuronosyltransferases (UGTs) are important detoxification enzymes and they contribute to bioavailability and elimination of many drugs. SULT1A3 is an extrahepatic enzyme responsible for the sulfonation of dopamine, which is often used as its probe substrate. A new method for analyzing dopamine-3-O-sulfate and dopamine-4-O-sulfate by high-performance liquid chromatography was developed and the enzyme kinetic parameters for their formation were determined using purified recombinant human SULT1A3. The results show that SULT1A3 strongly favors the 3-hydroxy group of dopamine, which indicates that it may be the major enzyme responsible for the difference between the circulating levels of dopamine sulfates in human blood. All 19 known human UGTs were expressed as recombinant enzymes in baculovirus infected insect cells and their activities toward dopamine and estradiol were studied. UGT1A10 was identified as the only UGT capable of dopamine glucuronidation at a substantial level. The results were supported by studies with human intestinal and liver microsomes. The affinity was low indicating that UGT1A10 is not an important enzyme in dopamine metabolism in vivo. Despite the low affinity, dopamine is a potential new probe substrate for UGT1A10 due to its selectivity. Dopamine was used to study the importance of phenylalanines 90 and 93 in UGT1A10. The results revealed distinct effects that are dependent on differences in the size of the side chain and on the differences in their position within the protein. Examination of twelve mutants revealed lower activity in all of them. However, the enzyme kinetic studies of four mutants showed that their affinities were similar to that of UGT1A10 suggesting that F90 and F93 are not directly involved in dopamine binding in the active site. The glucuronidation of β-estradiol and epiestradiol (α-estradiol) was studied to elucidate how the orientation of the 17-OH group affects conjugation at the 3-OH or the 17-OH of either diastereomer. The results show that there are clear differences in the regio- and stereoselectivities of UGTs. The most active isoforms were UGT1A10 and UGT2B7 demonstrating opposite regioselectivity. The stereoselectivities of UGT2Bs were more complex than those of UGT1As. The amino acid sequences of the human UGTs 1A9 and 1A10 are 93% identical, yet there are large differences in their activity and substrate selectivity. Several mutants were constructed to identify the residues responsible for the activity differences. The results revealed that the residues between Leu86 and Tyr176 of UGT1A9 determine the differences between UGT1A9 and UGT1A10. Phe117 of UGT1A9 participated in 1-naphthol binding and the residues at positions 152 and 169 contributed to the higher glucuronidation rates of UGT1A10. In summary, the results emphasize that the substrate selectivities, including regio- and stereoselectivities, of UGTs are complex and they are controlled by many amino acids rather than one critical residue.
Resumo:
The ability of the peripherally associated membrane protein cytochrome c (cyt c) to bind phospholipids in vitro was studied using fluorescence spectroscopy and large unilamellar liposomes. Previous work has shown that cyt c can bind phospholipids using two distinct mecha- nisms and sites, the A-site and the C-site. This binding is mediated by electrostatic or hydrophobic interactions, respectively. Here, we focus on the mechanism underlying these interactions. A chemically modified cyt c mutant Nle91 was used to study the ATP-binding site, which is located near the evolutionarily invariant Arg 91 on the protein surface. This site was also demonstrated to mediate phospholipid binding, possibly by functioning as a phospholipid binding site. Circular dichroism spectroscopy, time resolved fluorescence spectroscopy of zinc- porphyrin modified [Zn2+-heme] cyt c and liposome binding studies of the Nle91 mutant were used to demonstrate that ATP induces a conformational change in membrane- bound cyt c. The ATP-induced conformational changes were mediated by Arg 91 and were most pronounced in cyt c bound to phospholipids via the C-site. It has been previously reported that the hydrophobic interaction between phospho- lipids and cyt c (C-site) includes the binding of a phospholipid acyl chain inside the protein. In this mechanism, which is known as extended phospholipid anchorage, the sn-2 acyl chain of a membrane phospholipid protrudes out of the membrane surface and is able to bind in a hydrophobic cavity in cyt c. Direct evidence for this type of bind- ing mechanism was obtained by studying cyt c/lipid interaction using fluorescent [Zn2+- heme] cyt c and fluorescence quenching of brominated fatty acids and phospholipids. Under certain conditions, cyt c can form fibrillar protein-lipid aggregates with neg- atively charged phospholipids. These aggregates resemble amyloid fibrils, which are involved in the pathogenesis of many diseases. Congo red staining of these fibers con- firmed the presence of amyloid structures. A set of phospholipid-binding proteins was also found to form similar aggregates, suggesting that phospholipid-induced amyloid formation could be a general mechanism of amyloidogenesis.
Resumo:
Prolyl oligopeptidase (POP, prolyl endopeptidase, EC 3.4.21.26) is a serine-type peptidase (family S9 of clan SC) hydrolyzing peptides shorter than 30 amino acids. POP has been found in various mammalian and bacterial sources and it is widely distributed throughout different organisms. In human and rat, POP enzyme activity has been detected in most tissues, with the highest activity found mostly in the brain. POP has gained scientific interest as being involved in the hydrolyzis of many bioactive peptides connected with learning and memory functions, and also with neurodegenerative disorders. In drug or lesion induced amnesia models and in aged rodents, POP inhibitors have been able to revert memory loss. POP may have a fuction in IP3 signaling and it may be a possible target of mood stabilizing substances. POP may also have a role in protein trafficking, sorting and secretion. The role of POP during ontogeny has not yet been resolved. POP enzyme activity and expression have shown fluctuation during development. Specially high enzyme activities have been measured in the brain during early development. Reduced neuronal proliferation and differentation in presence of POP inhibitor have been reported. Nuclear POP has been observed in proliferating peripheral tissues and in cell cultures at the early stage of development. Also, POP coding mRNA is abundantly expressed during brain ontogeny and the highest levels of expression are associated with proliferative germinal matrices. This observation indicates a special role for POP in the regulation of neurogenesis during development. For the experimental part, the study was undertaken to investigate the expression and distribution of POP protein and enzymatic activity of POP in developing rat brain (from embryonic day 14 to post natal day 7) using immunohistochemistry, POP enzyme activity measurements and western blot-analysis. The aim was also to find in vivo confirmation of the nuclear colocalization of POP during early brain ontogeny. For immunohistochemistry, cryosections from the brains of the fetuses/rats were made and stained using specific antibody for POP and fluorescent markers for POP and nuclei. The enzyme activity assay was based on the fluorescence of 7- amino-4-methylcoumarin (AMC) generated from the fluorogenic substrate succinyl-glycyl-prolyl-7-amino-4-methylcoumarin (Suc-Gly-Pro-AMC) by POP. The amounts of POP protein and the specifity of POP antibody in rat embryos was confirmed by western blot analysis. We observed that enzymatic activity of POP is highest at embryonic day 18 while the protein amounts reach their peak at birth. POP was widely present throughout the developmental stages from embryonic day 14 to parturition day, although the POP-immunoreactivity varied abundantly. At embryonic days 14 and 18 notably amounts of POP was distributed at proliferative germinal zones. Furthermore, POP was located in the nucleus early in the development but is transferred to cytosol before birth. At P0 and P7 the POP-immunoreactivity was also widely observed, but the amount of POP was notably reduced at P7. POP was present in cytosol and in intercellular space, but no nuclear POP was observed. These findings support the idea of POP being involved in specific brain functions, such as neuronal proliferation and differentation. Our results in vivo confirm the previous cell culture results supporting the role of POP in neurogenesis. Moreover, an inconsistency of POP protein amounts and enzymatic activity late in the development suggests a strong regulation of POP activity and a possible non-hydrolytic role at that stage.
Resumo:
The crystal structure of copper ammonium oxalate dihydrate (space group P1̃) has been derived from a refinement of the two-dimensional (hk0) and (0kl) x-ray data using the atomic coordinateis of the isomorphous salt CuK 2(C2O4)2.2H2O as the starting point of the analysis. In contrast to the chromium complexes of oxalic acid the C-C bonds in both the two nonequivalent oxalate ions in the unit cell are single bonds (1.58 and 1.61 Å) consistent with the conclusion of Jeffrey and Parry that the carboxyl groups of the oxalate ion are separated by a pure a bond with little or no π conjugation across the molecule. Both the oxalate ions are slightly nonplanar. The copper ions occupy the special positions (0, 0, 0) and 0, 1/2, 0) and their coordination is of the distorted octahedral type with four nearest oxygen neighbors ( ≃ 2 Å) at the corners of a square and two more distant atoms along the octahedral bond direction. The environment of the NH4+ ions consists of eight nearest oxygen atoms at a mean distance of 3 Å.
Resumo:
Vitamin A, when extracted along with other lipids from sheep liver, had an E1cm.1% value of 14.4, which was raised to 45.57 on removal of the phospholipids by cold acetone. Selective hydrolysis of triglycerides by an extract of acetone-dried sheep pancreas in the presence of HgCl2 as inhibitor of vitamin A esterase, followed by chromatography through alumina gave a product with E1cm.1% value of 276. This on chromatography through magnesium oxide raised the E1cm.1, value to 601.5, representing 64% pure vitamin A ester calculated as palmitate, and the total recovery was 23% of the starting oil. The purified ester preparation, when subjected to reverse-phase chromatography on silicone-impregnated paper, gave a single ultraviolet fluorescent band. The fluorescent band on hydrolysis gave only one fatty acid. This was conclusively identified to be palmitic acid.
Resumo:
This dissertation is a synchronic description of adnominal person in the highly synthetic morphological system of Erzya as attested in extensive Erzya-language written-text corpora consisting of nearly 140 publications with over 4.5 million words and over 285,000 unique lexical items. Insight for this description have been obtained from several source grammars in German, Russian, Erzya, Finnish, Estonian and Hungarian, as well as bounteous discussions in the understanding of the language with native speakers and grammarians 1993 2010. Introductory information includes the discussion of the status of Erzya as a lan- guage, the enumeration of phonemes generally used in the transliteration of texts and an in-depth description of adnominal morphology. The reader is then made aware of typological and Erzya-specifc work in the study of adnominal-type person. Methods of description draw upon the prerequisite information required in the development of a two-level morphological analyzer, as can be obtained in the typological description of allomorphic variation in the target language. Indication of original author or dialect background is considered important in the attestation of linguistic phenomena, such that variation might be plotted for a synchronic description of the language. The phonological description includes the establishment of a 6-vowel, 29-consonant phoneme system for use in the transliteration of annotated texts, i.e. two phonemes more than are generally recognized, and numerous rules governing allophonic variation in the language. Erzya adnominal morphology is demonstrated to have a three-way split in stem types and a three-layer system of non-derivative affixation. The adnominal-affixation layers are broken into (a) declension (the categories of case, number and deictic marking); (b) nominal conjugation (non-verb grammatical and oblique-case items can be conjugated), and (c) clitic marking. Each layer is given statistical detail with regard to concatenability. Finally, individual subsections are dedicated to the matters of: possessive declension compatibility in the distinction of sublexica; genitive and dative-case paradigmatic defectivity in the possessive declension, where it is demonstrated to be parametrically diverse, and secondary declension, a proposed typology modifiers without nouns , as compatible with adnominal person.
Resumo:
Despite its bad reputation in the mass media, cholesterol is an indispensable constituent of cellular membranes and vertebrate life. It is, however, also potentially lethal as it may accumulate in the arterial intima causing atherosclerosis or elsewhere in the body due to inherited conditions. Studying cholesterol in cells, and research on how the cell biology of cholesterol affects on system level is essential for a better understanding of the disease states associated with cholesterol and for the development of new therapies for these conditions. On its way to the cell, exogenous cholesterol traverses through endosomes, transport vesicles involved in internalizing material to cells, and needs to be transported out of this compartment. This endosomal pool of cholesterol is important for understanding both the common disorders of metabolism and the more rare hereditary disorders of cholesterol metabolism. The study of cholesterol in cells has been hampered by the lack of bright fluorescent sterol analogs that would resemble cholesterol enough to be used in cellular studies. In the first study of my thesis, we present a new sterol analog, Boron-Dipyrromethene (BODIPY)-cholesterol for visualizing sterols in living cells and organism. This fluorescent cholesterol derivative is shown to behave similarly to cholesterol both by atomic scale computer simulations and biochemical experiments. We characterize its localization inside different types of living cells and show that it can be used to study sterol trafficking in living organisms. Two sterol binding proteins associated with the endosomal membrane; the Niemann-Pick type C disease protein 1 (NPC1) and the Oxysterol Binding Protein Related Protein 1 (ORP1) are the subjects of the rest of this study. Sensing cholesterol on endosomes, transporting lipids away from this compartment and the effects these lipids play on cellular metabolism are considered. In the second study we characterize how the NPC1 protein affects lipid metabolism. We show that this cholesterol binding protein affects synthesis of triglycerides and that genetic polymorphisms or a genetic defect in the NPC1 gene affect triglyceride on the whole body level. These effects take place via regulation of carbon fluxes to different lipid classes in cells. In the third part we characterize the effects of another endosomal sterol binding protein, ORP1L on the function and motility of endosomes. Specifically we elucidate how a mutation in the ability of ORP1L to bind sterols affects its behavior in cells, and how a change in ORP1L levels in cells affects the localization, degradative capacity and motility of endosomes. In addition we show that ORP1L manipulations affect cholesterol balance also in macrophages, a cell type important for the development of atherosclerosis.