969 resultados para ZM21 carburo di silicio SiC MMC extrusion magnesium
Resumo:
Epitaxial growth on n-type 4H-SiC 8°off-oriented substrates with a size of 10 × 10 mm~2 at different tem-peratures with various gas flow rates has been performed in a horizontal hot wall CVD reactor, using trichlorosilane (TCS) as a silicon precursor source together with ethylene as a carbon precursor source. The growth rate reached 23 μm/h and the optimal epilayer was obtained at 1600 ℃ with a TCS flow rate of 12 sccm in C/Si of 0.42, which has a good surface morphology with a low RMS of 0.64 nm in an area of 10 × 10μm~2. The homoepitaxial layer was oh-tained at 1500 ℃ with low growth rate (< 5μm/h) and the 3C-SiC epilayers were obtained at 1650 ℃ with a growth rate of 60-70μm/h. It is estimated that the structural properties of the epilayers have a relationship with the growth temperature and growth rate. Silicon droplets with different sizes are observed on the surface of the homoepitaxial layer in a low C/Si ratio of 0.32.
Resumo:
Micromachined comb-drive electrostatic resonators with folded-cantilever beams were designed and fabricated. A combination of Rayleigh's method and finite-element analysis was used to calculate the resonant frequency drift as we adjusted the device geometry and material parameters. Three micromachined lateral resonant resonators with different beam widths were fabricated. Their resonant frequencies were experimentally measured to be 64.5,147.2, and 255.5kHz, respectively, which are in good agreement with the simulated resonant frequency. It is shown that an improved frequency performance could be obtained on the poly 3C-SiC based device structural material systems with high Young's modulus.
Resumo:
Heteroepitaxial growth of 3C-SiC on patterned Si substrates by low pressure chemical vapor deposition (LPCVD) has been investigated to improve the crystal quality of 3C-SiC films. Si substrates were patterned with parallel lines, 1 to 10μm wide and spaced 1 to 10μm apart, which was carried out by photolithography and reactive ion etching. Growth behavior on the patterned substrates was systematically studied by scanning electron microscopy (SEM). An air gap structure and a spherical shape were formed on the patterned Si substrates with different dimensions. The air gap formed after coalescence reduced the stress in the 3C-SiC films, solving the wafer warp and making it possible to grow thicker films. XRD patterns indicated that the films grown on the maskless patterned Si substrates were mainly composed of crystal planes with (111) orientation.
Resumo:
采用等离子增强化学气相沉积方法(PEVVD)制备了微量掺碳的p型纳米非晶硅碳薄膜(p-nc-SiC:H),反应气体为硅烷和甲烷,掺杂气体采用硼烷,沉积温度分别采用333 K,353 K和373 K.测量结果表明随着沉积温度增加和碳含量的增加,薄膜的光学带隙增加;薄膜具有较宽的带隙和较高的电导率,同时有较低的激活能(0.06 eV).Raman和XRD测量结果表明薄膜存在纳米晶.优化的p型纳米非晶硅碳薄膜作为非晶硅p-i-n太阳电池的窗口层,使得太阳电池的开路电压达到0.94 V.
Resumo:
50mm 3C-SiC epilayers are grown on (100) and (111) Si substrates in a newly developed horizontal lowpressure hot-wall CVD reactor under different growth pressures and flow rates of H_2 carrier gas. The structure,electrical properties, and thickness uniformity of the 3C-SiC epilayers are investigated by X-ray diffraction (XRD) ,sheet resistance measurement, and spectroscopic ellipsometry. XRD patterns show that the 3C-SiC films have excellent crystallinity. The narrowest full widths at half maximum of the SIC(200) and (111) peaks are 0.41° and 0.21°, respectively. The best electrical uniformity of the 50mm 3C-SiC films obtained by sheet resistance measurement is 2.15%. A σ/mean value of ± 5.7% in thickness uniformity is obtained.
Resumo:
在6H-SiC衬底上,外延生长了AlGaN/GaN HEMT结构,设计并实现了高性能1mm AlGaN/GaN微波功率HEMT,外延材料利用金属有机物化学气相淀积技术生长.测试表明,该1mm栅宽器件栅长为0.8μm,输出电流密度达到1.16A/mm,跨导为241mS/mm,击穿电压>80V,特征频率达到20GHz,最大振荡频率为28GHz.5.4GHz连续波测试下功率增益为14.2dB,输出功率达4.1W,脉冲条件测试下功率增益为14.4dB,输出功率为5.2W,两端口阻抗特性显示了在微波应用中的良好潜力.
Resumo:
AlGaN/AlN/GaN high electron mobility transistor (HEMT) structures with a high-mobility GaN thin layer as a channel are grown on high resistive 6H-SiC substrates by metalorganic chemical vapor deposition. The HEMT structure exhibits a typical two-dimensional electron gas (2DEG) mobility of 1944cm2/(V · s) at room temperature and 11588cm2/(V· s) at 80K with almost equal 2DEG concentrations of about 1.03 × 1013 cm-2 High crystal quality of the HEMT structures is confirmed by triple-crystal X-ray diffraction analysis. Atomic force microscopy measurements reveal a smooth AlGaN surface with a root-mean-square roughness of 0. 27nm for a scan area of 10μm × 10μm. HEMT devices with 0.8μm gate length and 1.2mm gate width are fabricated using the structures. A maximum drain current density of 957mA/mm and an extrinsic transconductance of 267mS/mm are obtained.
Resumo:
One group of SiC films are grown on silicon-on-insulator (SOI) substrates with a series of silicon-overlayer thickness. Raman scattering spectroscopy measurement clearly indicates that a systematic trend of residual stress reduction as the silicon over-layer thickness decreases for the SOI substrates. Strain relaxation in the SiC epilayer is explained by force balance approach and near coincidence lattice model.
Resumo:
在硅衬底上利用具有质量选择功能的低能离子束沉积技术沉积碳离子制备出除碳、硅之外无其他杂质元素的纯净的立方SiC薄膜.利用X射线光电子谱、俄歇电子能谱、X射线衍射对样品进行了表征.结果显示常温和400℃制备的样品为非晶结构,在800℃制备的样品由一富碳的表面层和有着良好化学计量比的SiC层组成,碳化硅晶体薄膜是(111)织构的.通过分析可知衬底温度、离子沉积能量和样品保温扩散时间等因素综合在一起对于在硅上沉积SiC薄膜起着重要作用.远远大于TRIM预测厚度的SiC薄膜的获得是高的衬底温度、一定注入能量的碳离子引起的增强扩散以及通道注入效应综合作用的结果。
Resumo:
用LPCVD在si(111)上异质外延了n型3C-SiC,并在所外延的3C-SiC上蒸发Au/Ti,通过不同温度下的RTA(快速热退火)形成欧姆接触。用两种不同的传输线模型对Ti/3C-SiC欧姆接触的ρc(比接触电阻率)进行测量,在750℃退火后Ti/3C-SiC的ρc达到了最低值为3.68×10^-5Ω·cm^2这满足了应用的要求。AES分析结果还表明由于Ti的氧化,更高温度下的退火会使ρc增大。
Resumo:
Homoepitaxial growth of4H-SiC on off-oriented Si-face (0001) 4H-SiC substrates was performed at 1500℃ by using the step controlled Epitaxy. Ti/4H-SiC Schottky barrier diodes (SBDs) with blocking voltage over lkV have been made on an undoped epilayer with 32μm in thick and 2-5 × 10^15 cm^-3 in carrier density. The diode rectification ratio of forward to reverse (defined at ± 1V) is over 107 at room temperature and over 10^2 at 538K. Their electrical characteristics were studied by the current-voltage measurements in the temperature range from 20 to 265 ℃. The ideality factor and Schottky barrier height obtained at room temperature are 1.33 and 0. 905eV, respectively. The SBDs have on-state current density of 150A/cm^2 at a forward voltage drop of about 2.0V. The specific on-resistance for the rectifier is found to be as 7.9mΩ · cm^2 and its variation with temperature is T^2.0.
Resumo:
This paper presents the development of LPCVD growth of 3C-SiC thin films grown on Si mesas and thermally oxidized SiO2 masks over Si with an area of 150 × 100μm^2 and SiO2/Si substrates. The growth has been performed via chemical vapor deposition using SiH4 and C2H4 precursor gases with carrier gas of H2. 3C-SiC films on these substrates were characterized by optical microscopy, X-ray diffraction ( XRD ), X-ray photoelectron spectroscopy ( XPS ), scanning electron microscopy (SEM) and room temperature Hall effect measurements. It is shown that there were no voids at the interface between 3C-SiC and SiO2.
Resumo:
采用自行设计的水平冷壁低压化学气相沉积(LPCVD)方法在偏向〈1120〉晶向8°的n型4H-SiC(0001)衬底上进行了同质外延生长.在5.3×103Pa的低压下,外延膜生长速率超过3μm/h.电容-电压法测试表明在非有意掺杂外延膜中净施主浓度为8.4×10 15cm-3.Nomarski显微镜观察表明厚外延膜的表面光滑,生长缺陷密度很低.AFM测试显示表面均方根粗糙度为0.3nm,没有观察到宏观台阶结构.Raman谱线清晰锐利,表现出典型的4H-SiC特征.在低温PL谱中,近带边区域出现很强的自由激子峰,表明样品是高质量的.
Resumo:
报道了一种用透射谱数据分析法计算非晶硅碳薄膜的厚度、折射率、吸收系数和光学带隙等光学常数的方法和程序.这一方法引用有效谐振子模型理论的折射率色散关系,所有公式均为解析表达式,便于进行数据处理,无须专用软件,使用Excel即可完成,适用于多种半导体薄膜材料.将这种方法应用于PECVD方法制备的非晶硅碳(a-SiC∶H)薄膜,对其光学特性进行了分析.
Resumo:
用PECVD方法,以固定的甲烷硅烷气体流量比([CH4]/[SiH4]=1.2)和不同的氢稀释比(RH=[H2]/[CH4+SiH4]=12,22,33,102和135)制备了一系列的氢化非晶硅碳合金(a-SiC:H)薄膜.运用紫外-可见光透射谱(UV-VIS)、红外吸收谱(IR)、Raman谱以及光荧光发射谱(PL)测量研究了氢稀释和高温退火对薄膜生长和光学特性的影响.实验发现氢稀释使薄膜光学带隙展宽(从1.92到2.15 eV).高氢稀释条件下制备的薄膜经过1250℃退火后在室温下观察到可见光发光峰,峰位位于2.1 eV.结合Raman谱分析,认为发光峰源于纳米硅的量子限制效应,纳米硅被Si-C和Si-O限制.