681 resultados para integrated computer-based learning aids
Resumo:
One important steps in a successful project-based-learning methodology (PBL) is the process of providing the students with a convenient feedback that allows them to keep on developing their projects or to improve them. However, this task is more difficult in massive courses, especially when the project deadline is close. Besides, the continuous evaluation methodology makes necessary to find ways to objectively and continuously measure students' performance without increasing excessively instructors' work load. In order to alleviate these problems, we have developed a web service that allows students to request personal tutoring assistance during the laboratory sessions by specifying the kind of problem they have and the person who could help them to solve it. This service provides tools for the staff to manage the laboratory, for performing continuous evaluation for all students and for the student collaborators, and to prioritize tutoring according to the progress of the student's project. Additionally, the application provides objective metrics which can be used at the end of the subject during the evaluation process in order to support some students' final scores. Different usability statistics and the results of a subjective evaluation with more than 330 students confirm the success of the proposed application.
Resumo:
El concepto de algoritmo es básico en informática, por lo que es crucial que los alumnos profundicen en él desde el inicio de su formación. Por tanto, contar con una herramienta que guíe a los estudiantes en su aprendizaje puede suponer una gran ayuda en su formación. La mayoría de los autores coinciden en que, para determinar la eficacia de una herramienta de visualización de algoritmos, es esencial cómo se utiliza. Así, los estudiantes que participan activamente en la visualización superan claramente a los que la contemplan de forma pasiva. Por ello, pensamos que uno de los mejores ejercicios para un alumno consiste en simular la ejecución del algoritmo que desea aprender mediante el uso de una herramienta de visualización, i. e. consiste en realizar una simulación visual de dicho algoritmo. La primera parte de esta tesis presenta los resultados de una profunda investigación sobre las características que debe reunir una herramienta de ayuda al aprendizaje de algoritmos y conceptos matemáticos para optimizar su efectividad: el conjunto de especificaciones eMathTeacher, además de un entorno de aprendizaje que integra herramientas que las cumplen: GRAPHs. Hemos estudiado cuáles son las cualidades esenciales para potenciar la eficacia de un sistema e-learning de este tipo. Esto nos ha llevado a la definición del concepto eMathTeacher, que se ha materializado en el conjunto de especificaciones eMathTeacher. Una herramienta e-learning cumple las especificaciones eMathTeacher si actúa como un profesor virtual de matemáticas, i. e. si es una herramienta de autoevaluación que ayuda a los alumnos a aprender de forma activa y autónoma conceptos o algoritmos matemáticos, corrigiendo sus errores y proporcionando pistas para encontrar la respuesta correcta, pero sin dársela explícitamente. En estas herramientas, la simulación del algoritmo no continúa hasta que el usuario introduce la respuesta correcta. Para poder reunir en un único entorno una colección de herramientas que cumplan las especificaciones eMathTeacher hemos creado GRAPHs, un entorno ampliable, basado en simulación visual, diseñado para el aprendizaje activo e independiente de los algoritmos de grafos y creado para que en él se integren simuladores de diferentes algoritmos. Además de las opciones de creación y edición del grafo y la visualización de los cambios producidos en él durante la simulación, el entorno incluye corrección paso a paso, animación del pseudocódigo del algoritmo, preguntas emergentes, manejo de las estructuras de datos del algoritmo y creación de un log de interacción en XML. Otro problema que nos planteamos en este trabajo, por su importancia en el proceso de aprendizaje, es el de la evaluación formativa. El uso de ciertos entornos e-learning genera gran cantidad de datos que deben ser interpretados para llegar a una evaluación que no se limite a un recuento de errores. Esto incluye el establecimiento de relaciones entre los datos disponibles y la generación de descripciones lingüísticas que informen al alumno sobre la evolución de su aprendizaje. Hasta ahora sólo un experto humano era capaz de hacer este tipo de evaluación. Nuestro objetivo ha sido crear un modelo computacional que simule el razonamiento del profesor y genere un informe sobre la evolución del aprendizaje que especifique el nivel de logro de cada uno de los objetivos definidos por el profesor. Como resultado del trabajo realizado, la segunda parte de esta tesis presenta el modelo granular lingüístico de la evaluación del aprendizaje, capaz de modelizar la evaluación y generar automáticamente informes de evaluación formativa. Este modelo es una particularización del modelo granular lingüístico de un fenómeno (GLMP), en cuyo desarrollo y formalización colaboramos, basado en la lógica borrosa y en la teoría computacional de las percepciones. Esta técnica, que utiliza sistemas de inferencia basados en reglas lingüísticas y es capaz de implementar criterios de evaluación complejos, se ha aplicado a dos casos: la evaluación, basada en criterios, de logs de interacción generados por GRAPHs y de cuestionarios de Moodle. Como consecuencia, se han implementado, probado y utilizado en el aula sistemas expertos que evalúan ambos tipos de ejercicios. Además de la calificación numérica, los sistemas generan informes de evaluación, en lenguaje natural, sobre los niveles de competencia alcanzados, usando sólo datos objetivos de respuestas correctas e incorrectas. Además, se han desarrollado dos aplicaciones capaces de ser configuradas para implementar los sistemas expertos mencionados. Una procesa los archivos producidos por GRAPHs y la otra, integrable en Moodle, evalúa basándose en los resultados de los cuestionarios. ABSTRACT The concept of algorithm is one of the core subjects in computer science. It is extremely important, then, for students to get a good grasp of this concept from the very start of their training. In this respect, having a tool that helps and shepherds students through the process of learning this concept can make a huge difference to their instruction. Much has been written about how helpful algorithm visualization tools can be. Most authors agree that the most important part of the learning process is how students use the visualization tool. Learners who are actively involved in visualization consistently outperform other learners who view the algorithms passively. Therefore we think that one of the best exercises to learn an algorithm is for the user to simulate the algorithm execution while using a visualization tool, thus performing a visual algorithm simulation. The first part of this thesis presents the eMathTeacher set of requirements together with an eMathTeacher-compliant tool called GRAPHs. For some years, we have been developing a theory about what the key features of an effective e-learning system for teaching mathematical concepts and algorithms are. This led to the definition of eMathTeacher concept, which has materialized in the eMathTeacher set of requirements. An e-learning tool is eMathTeacher compliant if it works as a virtual math trainer. In other words, it has to be an on-line self-assessment tool that helps students to actively and autonomously learn math concepts or algorithms, correcting their mistakes and providing them with clues to find the right answer. In an eMathTeacher-compliant tool, algorithm simulation does not continue until the user enters the correct answer. GRAPHs is an extendible environment designed for active and independent visual simulation-based learning of graph algorithms, set up to integrate tools to help the user simulate the execution of different algorithms. Apart from the options of creating and editing the graph, and visualizing the changes made to the graph during simulation, the environment also includes step-by-step correction, algorithm pseudo-code animation, pop-up questions, data structure handling and XML-based interaction log creation features. On the other hand, assessment is a key part of any learning process. Through the use of e-learning environments huge amounts of data can be output about this process. Nevertheless, this information has to be interpreted and represented in a practical way to arrive at a sound assessment that is not confined to merely counting mistakes. This includes establishing relationships between the available data and also providing instructive linguistic descriptions about learning evolution. Additionally, formative assessment should specify the level of attainment of the learning goals defined by the instructor. Till now, only human experts were capable of making such assessments. While facing this problem, our goal has been to create a computational model that simulates the instructor’s reasoning and generates an enlightening learning evolution report in natural language. The second part of this thesis presents the granular linguistic model of learning assessment to model the assessment of the learning process and implement the automated generation of a formative assessment report. The model is a particularization of the granular linguistic model of a phenomenon (GLMP) paradigm, based on fuzzy logic and the computational theory of perceptions, to the assessment phenomenon. This technique, useful for implementing complex assessment criteria using inference systems based on linguistic rules, has been applied to two particular cases: the assessment of the interaction logs generated by GRAPHs and the criterion-based assessment of Moodle quizzes. As a consequence, several expert systems to assess different algorithm simulations and Moodle quizzes have been implemented, tested and used in the classroom. Apart from the grade, the designed expert systems also generate natural language progress reports on the achieved proficiency level, based exclusively on the objective data gathered from correct and incorrect responses. In addition, two applications, capable of being configured to implement the expert systems, have been developed. One is geared up to process the files output by GRAPHs and the other one is a Moodle plug-in set up to perform the assessment based on the quizzes results.
Resumo:
In recent decades, full electric and hybrid electric vehicles have emerged as an alternative to conventional cars due to a range of factors, including environmental and economic aspects. These vehicles are the result of considerable efforts to seek ways of reducing the use of fossil fuel for vehicle propulsion. Sophisticated technologies such as hybrid and electric powertrains require careful study and optimization. Mathematical models play a key role at this point. Currently, many advanced mathematical analysis tools, as well as computer applications have been built for vehicle simulation purposes. Given the great interest of hybrid and electric powertrains, along with the increasing importance of reliable computer-based models, the author decided to integrate both aspects in the research purpose of this work. Furthermore, this is one of the first final degree projects held at the ETSII (Higher Technical School of Industrial Engineers) that covers the study of hybrid and electric propulsion systems. The present project is based on MBS3D 2.0, a specialized software for the dynamic simulation of multibody systems developed at the UPM Institute of Automobile Research (INSIA). Automobiles are a clear example of complex multibody systems, which are present in nearly every field of engineering. The work presented here benefits from the availability of MBS3D software. This program has proven to be a very efficient tool, with a highly developed underlying mathematical formulation. On this basis, the focus of this project is the extension of MBS3D features in order to be able to perform dynamic simulations of hybrid and electric vehicle models. This requires the joint simulation of the mechanical model of the vehicle, together with the model of the hybrid or electric powertrain. These sub-models belong to completely different physical domains. In fact the powertrain consists of energy storage systems, electrical machines and power electronics, connected to purely mechanical components (wheels, suspension, transmission, clutch…). The challenge today is to create a global vehicle model that is valid for computer simulation. Therefore, the main goal of this project is to apply co-simulation methodologies to a comprehensive model of an electric vehicle, where sub-models from different areas of engineering are coupled. The created electric vehicle (EV) model consists of a separately excited DC electric motor, a Li-ion battery pack, a DC/DC chopper converter and a multibody vehicle model. Co-simulation techniques allow car designers to simulate complex vehicle architectures and behaviors, which are usually difficult to implement in a real environment due to safety and/or economic reasons. In addition, multi-domain computational models help to detect the effects of different driving patterns and parameters and improve the models in a fast and effective way. Automotive designers can greatly benefit from a multidisciplinary approach of new hybrid and electric vehicles. In this case, the global electric vehicle model includes an electrical subsystem and a mechanical subsystem. The electrical subsystem consists of three basic components: electric motor, battery pack and power converter. A modular representation is used for building the dynamic model of the vehicle drivetrain. This means that every component of the drivetrain (submodule) is modeled separately and has its own general dynamic model, with clearly defined inputs and outputs. Then, all the particular submodules are assembled according to the drivetrain configuration and, in this way, the power flow across the components is completely determined. Dynamic models of electrical components are often based on equivalent circuits, where Kirchhoff’s voltage and current laws are applied to draw the algebraic and differential equations. Here, Randles circuit is used for dynamic modeling of the battery and the electric motor is modeled through the analysis of the equivalent circuit of a separately excited DC motor, where the power converter is included. The mechanical subsystem is defined by MBS3D equations. These equations consider the position, velocity and acceleration of all the bodies comprising the vehicle multibody system. MBS3D 2.0 is entirely written in MATLAB and the structure of the program has been thoroughly studied and understood by the author. MBS3D software is adapted according to the requirements of the applied co-simulation method. Some of the core functions are modified, such as integrator and graphics, and several auxiliary functions are added in order to compute the mathematical model of the electrical components. By coupling and co-simulating both subsystems, it is possible to evaluate the dynamic interaction among all the components of the drivetrain. ‘Tight-coupling’ method is used to cosimulate the sub-models. This approach integrates all subsystems simultaneously and the results of the integration are exchanged by function-call. This means that the integration is done jointly for the mechanical and the electrical subsystem, under a single integrator and then, the speed of integration is determined by the slower subsystem. Simulations are then used to show the performance of the developed EV model. However, this project focuses more on the validation of the computational and mathematical tool for electric and hybrid vehicle simulation. For this purpose, a detailed study and comparison of different integrators within the MATLAB environment is done. Consequently, the main efforts are directed towards the implementation of co-simulation techniques in MBS3D software. In this regard, it is not intended to create an extremely precise EV model in terms of real vehicle performance, although an acceptable level of accuracy is achieved. The gap between the EV model and the real system is filled, in a way, by introducing the gas and brake pedals input, which reflects the actual driver behavior. This input is included directly in the differential equations of the model, and determines the amount of current provided to the electric motor. For a separately excited DC motor, the rotor current is proportional to the traction torque delivered to the car wheels. Therefore, as it occurs in the case of real vehicle models, the propulsion torque in the mathematical model is controlled through acceleration and brake pedal commands. The designed transmission system also includes a reduction gear that adapts the torque coming for the motor drive and transfers it. The main contribution of this project is, therefore, the implementation of a new calculation path for the wheel torques, based on performance characteristics and outputs of the electric powertrain model. Originally, the wheel traction and braking torques were input to MBS3D through a vector directly computed by the user in a MATLAB script. Now, they are calculated as a function of the motor current which, in turn, depends on the current provided by the battery pack across the DC/DC chopper converter. The motor and battery currents and voltages are the solutions of the electrical ODE (Ordinary Differential Equation) system coupled to the multibody system. Simultaneously, the outputs of MBS3D model are the position, velocity and acceleration of the vehicle at all times. The motor shaft speed is computed from the output vehicle speed considering the wheel radius, the gear reduction ratio and the transmission efficiency. This motor shaft speed, somehow available from MBS3D model, is then introduced in the differential equations corresponding to the electrical subsystem. In this way, MBS3D and the electrical powertrain model are interconnected and both subsystems exchange values resulting as expected with tight-coupling approach.When programming mathematical models of complex systems, code optimization is a key step in the process. A way to improve the overall performance of the integration, making use of C/C++ as an alternative programming language, is described and implemented. Although this entails a higher computational burden, it leads to important advantages regarding cosimulation speed and stability. In order to do this, it is necessary to integrate MATLAB with another integrated development environment (IDE), where C/C++ code can be generated and executed. In this project, C/C++ files are programmed in Microsoft Visual Studio and the interface between both IDEs is created by building C/C++ MEX file functions. These programs contain functions or subroutines that can be dynamically linked and executed from MATLAB. This process achieves reductions in simulation time up to two orders of magnitude. The tests performed with different integrators, also reveal the stiff character of the differential equations corresponding to the electrical subsystem, and allow the improvement of the cosimulation process. When varying the parameters of the integration and/or the initial conditions of the problem, the solutions of the system of equations show better dynamic response and stability, depending on the integrator used. Several integrators, with variable and non-variable step-size, and for stiff and non-stiff problems are applied to the coupled ODE system. Then, the results are analyzed, compared and discussed. From all the above, the project can be divided into four main parts: 1. Creation of the equation-based electric vehicle model; 2. Programming, simulation and adjustment of the electric vehicle model; 3. Application of co-simulation methodologies to MBS3D and the electric powertrain subsystem; and 4. Code optimization and study of different integrators. Additionally, in order to deeply understand the context of the project, the first chapters include an introduction to basic vehicle dynamics, current classification of hybrid and electric vehicles and an explanation of the involved technologies such as brake energy regeneration, electric and non-electric propulsion systems for EVs and HEVs (hybrid electric vehicles) and their control strategies. Later, the problem of dynamic modeling of hybrid and electric vehicles is discussed. The integrated development environment and the simulation tool are also briefly described. The core chapters include an explanation of the major co-simulation methodologies and how they have been programmed and applied to the electric powertrain model together with the multibody system dynamic model. Finally, the last chapters summarize the main results and conclusions of the project and propose further research topics. In conclusion, co-simulation methodologies are applicable within the integrated development environments MATLAB and Visual Studio, and the simulation tool MBS3D 2.0, where equation-based models of multidisciplinary subsystems, consisting of mechanical and electrical components, are coupled and integrated in a very efficient way.
Resumo:
This dissertation includes two studies. Study 1 is a qualitative case study that describes enactment of the main components of a high fidelity Full-Day Early Learning Kindergarten (FDELK) classroom, specifically play-based learning and teacher-ECE collaboration. Study 2 is a quantitative analysis that investigates how effectively the FDELK program promotes school readiness skills, namely self-regulation, literacy, and numeracy, in Kindergarteners. To describe the main components of an FDELK classroom in Study 1, a sub-sample of four high fidelity case study schools were selected from a larger case study sample. Interview data from these schools’ administrators, educators, parents, and community stakeholders were used to describe how the main components of the FDELK program enabled educators to meet the individual needs of students and promote students’ SR development. In Study 2, hierarchical regression analyses of 32,207 students’ self-regulation, literacy, and numeracy outcomes using 2012 Ontario Early Development Instrument (EDI) data revealed essentially no benefit for students participating in the FDELK program when compared to peers in Half-Day or Alternate-Day Kindergarten programs. Being older and female predicted more positive SR and literacy outcomes. Age and gender accounted for limited variance in numeracy outcomes. Results from both studies suggest that the Ontario Ministry of Education should take steps to improve the quality of the FDELK program by incorporating evidence-based guidelines and goals for play, reducing Kindergarten class sizes to more effectively scaffold learning, and revising curriculum expectations to include a greater focus on SR, literacy, and numeracy skills.
Resumo:
Introduction: Self-help computer-based programs are easily accessible and cost-effective interventions with a great recruitment potential. However, each program is different and results of meta-analyses may not apply to each new program; therefore, evaluations of new programs are warranted. The aim of this study was to assess the marginal efficacy of a computer-based, individually tailored program (the Coach) over and above the use of a comprehensive Internet smoking cessation website. Methods: A two-group randomized controlled trial was conducted. The control group only accessed the website, whereas the intervention group received the Coach in addition. Follow-up was conducted by e-mail after three and six months (self-administrated questionnaires). Of 1120 participants, 579 (51.7%) responded after three months and 436 (38.9%) after six months. The primary outcome was self-reported smoking abstinence over four weeks. Results: Counting dropouts as smokers, there were no statistically significant differences between intervention and control groups in smoking cessation rates after three months (20.2% vs. 17.5%, p¼0.25, odds ratio (OR)¼1.20) and six months (17% vs. 15.5%, p¼0.52, OR¼1.12). Excluding dropouts from the analysis, there were statistically significant differences after three months (42% vs. 31.6%, p¼0.01, OR¼1.57), but not after six months (46.1% vs. 37.8%, p¼0.081, OR¼1.41). The program also significantly increased motivation to quit after three months and self-efficacy after three and six months. Discussion: An individually tailored program delivered via the Internet and by e-mail in addition to a smoking cessation website did not significantly increase smoking cessation rates, but it increased motivation to quit and self-efficacy.
Resumo:
"Invited paper for the NATO Advanced Study Institute Seminar on Computer Oriented Learning Processes, Aug. 26-Sept. 7, 1974, Bonas, France."
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
Objective: Five double-blind, randomized, saline-controlled trials (RCTs) were included in the United States marketing application for an intra-articular hyaluronan (IA-HA) product for the treatment of osteoarthritis (OA) of the knee. We report an integrated analysis of the primary Case Report Form (CRF) data from these trials. Method. Trials were similar in design, patient population and outcome measures - all included the Lequesne Algofunctional Index (LI), a validated composite index of pain and function, evaluating treatment over 3 months. Individual patient data were pooled; a repeated measures analysis of covariance was performed in the intent-to-treat (ITT) population. Analyses utilized both fixed and random effects models. Safety data from the five RCTs were summarized. Results: A total of 1155 patients with radiologically confirmed knee OA were enrolled: 619 received three or five IA-HA injections; 536 received. placebo saline injections. In the active and control groups, mean ages were 61.8 and 61.4 years; 62.4% and 58.8% were women; baseline total Lequesne scores 11.03 and 11.30, respectively. Integrated analysis of the pooled data set found a statistically significant reduction (P < 0.001) in total Lequesne score with hyaluronan (HA) (-2.68) vs placebo (-2.00); estimated difference -0.68 (95% CI: -0.56 to -0.79), effect size 0.20. Additional modeling approaches confirmed robustness of the analyses. Conclusions: This integrated analysis demonstrates that multiple design factors influence the results of RCTs assessing efficacy of intra-articular (IA) therapies, and that integrated analyses based on primary data differ from meta-analyses using transformed data. (C) 2006 OsteoArthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
Resumo:
SQL (Structured Query Language) is one of the essential topics in foundation databases courses in higher education. Due to its apparent simple syntax, learning to use the full power of SQL can be a very difficult activity. In this paper, we introduce SQLator, which is a web-based interactive tool for learning SQL. SQLator's key function is the evaluate function, which allows a user to evaluate the correctness of his/her query formulation. The evaluate engine is based on complex heuristic algorithms. The tool also provides instructors the facility to create and populate database schemas with an associated pool of SQL queries. Currently it hosts two databases with a query pool of 300+ across the two databases. The pool is divided into 3 categories according to query complexity. The SQLator user can perform unlimited executions and evaluations on query formulations and/or view the solutions. The SQLator evaluate function has a high rate of success in evaluating the user's statement as correct (or incorrect) corresponding to the question. We will present in this paper, the basic architecture and functions of SQLator. We will further discuss the value of SQLator as an educational technology and report on educational outcomes based on studies conducted at the School of Information Technology and Electrical Engineering, The University of Queensland.
Resumo:
November 2000 saw the graduation of the first cohort from the new MBBS Program at The University of Queensland. The fully integrated problem-based curriculum has provided many challenges and opportunities for The University of Queensland Library such as servicing an extensive remote student population, information technology issues and customer demand. In October 2000 all four years of the MBBS Program completed a survey on related issues such as the library's collection, web-based resources, information skills and evidence-based medicine. This paper focuses on the results of the survey, and the future directions of the library to ensure that the new doctors graduating from this program gain the essential attributes of life-long learning, information management and evidence-based principles.
Resumo:
The Undergraduate Site Learning Program (USLP) is an innovative work-based learning program that addresses the call to develop a broader set ofattributes in engineering graduates. Unlike cooperative education programs, site learning can give students full academic credit for their placement without extending the duration of the degree through the use of an innovative learning alignment model. A cenrralpart ofthis program is a unique course entitled Professional Development in which students articulate and reflect upon the lessons they leom while on placement in industry. Students spend the bulk ofa semester on-site often in remote locations, which requires a flexible approach to course operation and fosters independent learning. Thus the USLP challenges both staff and students and produces outcomes that bofh the alumni and industry value.
Resumo:
The primary goal of this research is to design and develop an education technology to support learning in global operations management. The research implements a series of studies to determine the right balance among user requirements, learning methods and applied technologies, on a view of student-centred learning. This research is multidisciplinary by nature, involving topics from various disciplines such as global operations management, curriculum and contemporary learning theory, and computer aided learning. Innovative learning models that emphasise on technological implementation are employed and discussed throughout this research.
Resumo:
Lifelong learning is a ‘keystone’ of educational policies (Faure, 1972) where the emphasis on learning shifts from teacher to learner. Higher Education (HE) institutions should be committed to developing lifelong learning, that is promoting learning that is flexible, diverse and relevant at different times, and in different places, and is pursued throughout life. Therefore the HE sector needs to develop effective strategies to encourage engagement in meaningful learning for diverse student populations. The use of e-portfolios, as a ‘purposeful aggregation of digital items’ (Sutherland & Powell, 2007), can meet the needs of the student community by encouraging reflection, the recording of experiences and achievements, and personal development planning (PDP). The use of e-portfolios also promotes inclusivity in learning as it provides students with the opportunity to articulate their aspirations and take the first steps along the pathway of lifelong learning. However, ensuring the uptake of opportunities within their learning is more complex than the students simply having access to the software. Therefore it is argued here that crucial to the effective uptake and engagement of the e-portfolio is embedding it purposefully within the curriculum. In order to investigate effective implementation of e-portfolios an explanatory case study on their use was carried out, initially focusing on 3 groups of students engaged in work-based learning and professional practice. The 3 groups had e-Portfolios embedded and assessed at different levels. Group 1 did not have the e-Portfolio embedded into their curriculum nor was the e-Portfolio assessed. Group 2 had the e-Portfolio embedded into the curriculum and formatively assessed. Group 3 also had the e-Portfolio embedded into the curriculum and were summatively assessed. Results suggest that the use of e-Portfolios needs to be integral to curriculum design in modules rather than used as an additional tool. In addition to this more user engagement was found in group 2 where the e-Portfolio was formatively assessed only. The implications of this case study are further discussed in terms of curriculum development.
Resumo:
This paper provides a critical overview into a distinctive typology of Learning and Teaching Research developed at a relatively small, research-led UK University. Based upon research into staff perceptions of the relationship between learning and teaching research and practice, the model represents an holistic approach to evidence-based learning and teaching practice in Contemporary Higher Education.
Resumo:
Geometric information relating to most engineering products is available in the form of orthographic drawings or 2D data files. For many recent computer based applications, such as Computer Integrated Manufacturing (CIM), these data are required in the form of a sophisticated model based on Constructive Solid Geometry (CSG) concepts. A recent novel technique in this area transfers 2D engineering drawings directly into a 3D solid model called `the first approximation'. In many cases, however, this does not represent the real object. In this thesis, a new method is proposed and developed to enhance this model. This method uses the notion of expanding an object in terms of other solid objects, which are either primitive or first approximation models. To achieve this goal, in addition to the prepared subroutine to calculate the first approximation model of input data, two other wireframe models are found for extraction of sub-objects. One is the wireframe representation on input, and the other is the wireframe of the first approximation model. A new fast method is developed for the latter special case wireframe, which is named the `first approximation wireframe model'. This method avoids the use of a solid modeller. Detailed descriptions of algorithms and implementation procedures are given. In these techniques utilisation of dashed line information is also considered in improving the model. Different practical examples are given to illustrate the functioning of the program. Finally, a recursive method is employed to automatically modify the output model towards the real object. Some suggestions for further work are made to increase the domain of objects covered, and provide a commercially usable package. It is concluded that the current method promises the production of accurate models for a large class of objects.