992 resultados para Virtual Instruments


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the digital age, the hyperspace of virtual reality systems stands out as a new spatial concept creating a parallel realm to "real" space. Virtual reality influences one’s experience of and interaction with architectural space. This "otherworld" brings up the criticism of the existing conception of space, time and body. Hyperspaces are relatively new to designers but not to filmmakers. Their cinematic representations help the comprehension of the outcomes of these new spaces. Visualisation of futuristic ideas on the big screen turns film into a medium for spatial experimentation. Creating a possible future, The Matrix (Andy and Larry Wachowski, 1999) takes the concept of hyperspace to a level not-yet-realised but imagined. With a critical gaze at the existing norms of architecture, the film creates new horizons in terms of space. In this context, this study introduces science fiction cinema as a discussion medium to understand the potentials of virtual reality systems for the architecture of the twenty first century. As a "role model" cinema helps to better understand technological and spatial shifts. It acts as a vehicle for going beyond the spatial theories and designs of the twentieth century, and defining the conception of space in contemporary architecture.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper examines the applicability of an immersive virtual reality (VR) system to the process of organizational learning in a manufacturing context. The work focuses on the extent to which realism has to be represented in a simulated product build scenario in order to give the user an effective learning experience for an assembly task. Current technologies allow the visualization and manipulation of objects in VR systems but physical behaviors such as contact between objects and the effects of gravity are not commonly represented in off the shelf simulation solutions and the computational power required to facilitate these functions remains a challenge. This work demonstrates how physical behaviors can be coded and represented through the development of more effective mechanisms for the computer aided design (CAD) and VR interface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Semiconductor fabrication involves several sequential processing steps with the result that critical production variables are often affected by a superposition of affects over multiple steps. In this paper a Virtual Metrology (VM) system for early stage measurement of such variables is presented; the VM system seeks to express the contribution to the output variability that is due to a defined observable part of the production line. The outputs of the processed system may be used for process monitoring and control purposes. A second contribution of this work is the introduction of Elastic Nets, a regularization and variable selection technique for the modelling of highly-correlated datasets, as a technique for the development of VM models. Elastic Nets and the proposed VM system are illustrated using real data from a multi-stage etch process used in the fabrication of disk drive read/write heads. © 2013 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Increasingly semiconductor manufacturers are exploring opportunities for virtual metrology (VM) enabled process monitoring and control as a means of reducing non-value added metrology and achieving ever more demanding wafer fabrication tolerances. However, developing robust, reliable and interpretable VM models can be very challenging due to the highly correlated input space often associated with the underpinning data sets. A particularly pertinent example is etch rate prediction of plasma etch processes from multichannel optical emission spectroscopy data. This paper proposes a novel input-clustering based forward stepwise regression methodology for VM model building in such highly correlated input spaces. Max Separation Clustering (MSC) is employed as a pre-processing step to identify a reduced srt of well-conditioned, representative variables that can then be used as inputs to state-of-the-art model building techniques such as Forward Selection Regression (FSR), Ridge regression, LASSO and Forward Selection Ridge Regression (FCRR). The methodology is validated on a benchmark semiconductor plasma etch dataset and the results obtained are compared with those achieved when the state-of-art approaches are applied directly to the data without the MSC pre-processing step. Significant performance improvements are observed when MSC is combined with FSR (13%) and FSRR (8.5%), but not with Ridge Regression (-1%) or LASSO (-32%). The optimal VM results are obtained using the MSC-FSR and MSC-FSRR generated models. © 2012 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we outline the background, mission, and activities of the Virtual Institute for Artificial Electromagnetic Materials and Metamaterials (METAMORPHOSE VI). This international association, founded in the framework of the FP-6 Network of Excellence METAMORPHOSE, aims at promoting and developing research, training, and dissemination activities in the emerging and highly dynamic field of advanced electromagnetic materials and metamaterials at both European and International levels. More than 300 researchers are currently associated with the METAMORPHOSE VI which networks them together in a learnt society. After a brief description of the association and its mission, we present an overview of the activities developed by the METAMORPHOSE VI, with a particular emphasis on the coordination of the European Doctoral Program on Metamaterials (EUPROMETA) and the organization of the International Congress on Advanced Electromagnetic Materials in Microwaves and Optics – metamaterials congress.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Virtual metrology (VM) aims to predict metrology values using sensor data from production equipment and physical metrology values of preceding samples. VM is a promising technology for the semiconductor manufacturing industry as it can reduce the frequency of in-line metrology operations and provide supportive information for other operations such as fault detection, predictive maintenance and run-to-run control. The prediction models for VM can be from a large variety of linear and nonlinear regression methods and the selection of a proper regression method for a specific VM problem is not straightforward, especially when the candidate predictor set is of high dimension, correlated and noisy. Using process data from a benchmark semiconductor manufacturing process, this paper evaluates the performance of four typical regression methods for VM: multiple linear regression (MLR), least absolute shrinkage and selection operator (LASSO), neural networks (NN) and Gaussian process regression (GPR). It is observed that GPR performs the best among the four methods and that, remarkably, the performance of linear regression approaches that of GPR as the subset of selected input variables is increased. The observed competitiveness of high-dimensional linear regression models, which does not hold true in general, is explained in the context of extreme learning machines and functional link neural networks.