1000 resultados para Laboratorio de matemática


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Investigar si los diferentes tipos de problemas condicionan el perfil metacognitivo de futuros profesores de matemáticas, teniendo presentes las categorías predefinidas propuestas en el modelo de Lester: orientación, organización, ejecución y verificación. Analizar e interpretar procesos metacognitivos de futuros profesores de matemáticas en la actividad de resolución de problemas. Reflexionar sobre la utilización de la tecnología dedeo en la investigación educativa, respecto al registro de la verbalización de los pensamientos en el acto de resolución de problemas por parte de futuros profesores de matemáticas. Futuros profesores de matemáticas que cursen el tercer año de carrera y que posean formación en el nivel de resolución de problemas y en metacognición. Se han constituido dos grupos de 3 miembros cada uno, el grupo A formado por sujetos que se consideren buenos solucionadores de problemas de matemáticas y les guste trabajar en equipo, el grupo B constituido por sujetos que no se consideren buenos solucionadores de problemas de matemáticas y no les guste trabajar en equipo. La constitución de los equipos se realiza según las respuestas dadas a un cuestionario concebido para tal fin. Se ha seguido un estudio exploratorio sobre la temática para definir mejor el problema de estudio y describir los comportamientos observables. La investigación provoca en los sujetos del estudio la explicitación de procesos cognitivos y metacognitivos. Cuestionario inicial para analizar la autopercepción de los sujetos respecto a la solución de problemas y su capacidad para trabajar en grupo, se trata de una escala Likert de 5 opciones. Registros en vídeo y hojas de actividades de los problemas. Observación descriptiva de los vídeos grabados y registros terminológicos de los sujetos para recoger el los pensamientos en alto de los sujetos y recoger la verbalización del proceso de resolución de problemas seguido por los sujetos para identificar las intervenciones de nivel metacognitivo. Las transcripciones de los vídeos se realizan en referencia a las cuatro categorías del modelo de Lester: orientación, organización, ejecución y comprobación. Categorización y análisis estadístico de las escalas y análisis del contenido de las intervenciones orales. La investigación analiza la temática de la resolución de problemas y su importancia en la disciplina de matemáticas, concretando la investigación en los futuros profesores de esta disciplina. Se aborda el tema de la metacognición y su importancia en los procesos de enseñanza y aprendizaje de las matemáticas; analiza la utilización del vídeo como recurso para la investigación y las posibilidades que ofrece para la investigación de casos de resolución de problemas y de los procesos metacognitivos en los sujetos analizados. El análisis de los resultados indica que no se ha encontrado en la muestra ningún sujeto que no se considere buen solucionador de problemas de matemáticas y no le guste trabajar en equipo. Por lo tanto los grupos quedaron formados de la siguiente forma: el grupo A por sujetos con altos valores en las categorías de resolución de problemas y trabajo en grupo y el grupo B por sujetos con valoraciones medias. El análisis de los datos indica que los dos grupos manifiestas patrones de desempeño metacognitivo ligeramente diferentes el uno del otro. El número de problemas involucrado en el estudio es reducido, sería interesante someter a estos dos grupos a nuevos problemas para verificar si esa tendencia se mantiene o no; sería deseable someter a los grupos a una reflexión acerca del porqué existe una categoría donde ocurren menos intervenciones metacognitivas que en las otras. No parece existir una relación muy estrecha entre los tipos de problemas y el número de intervenciones metacognitivas resultante de las resoluciones, en cambio parece observarse una relación directa entre el nivel de dificultad sentido en la resolución de problemas y el número de intervenciones metacognitivas resultante. Respecto a la grabación con vídeo se constata su utilidad para el registro de intervenciones metacognitivas ya que facilita que se puedan describir todos los procesos de resolución llevados a cabo por los grupos en la totalidad de problemas. Al mismo tiempo se manifiesta que la presencia de las cámaras no fue un factor de inhibición. Se destacan los bajos niveles de éxito logrados en la resolución de lo 6 problemas abordados, a pesar de esperarse unos niveles superiores de éxito en el grupo A, sin embargo el grupo B consiguió puntuaciones superiores en la escala holística de Charles. Se considera que estos resultados son consecuencia del escaso hábito de los futuros profesores para resolver en grupo problemas de este género. Es necesario profundizar en la investigación sobre la manera en la que se comportan cognitivamente los profesores de matemáticas y es necesario desarrollar programas de formación inicial de profesores de matemáticas que contemplen un componente de metacognición fuerte.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Queremos presentar una forma distinta de trabajar la Didáctica de la Geometría en las Escuelas Universitarias de Magisterio basada en la idea de laboratorio, entendida como oportunidad de experimentar y forma de producción. La metodología a seguir la hemos desarrollado en dos bloques: un primer bloque en el que trabajamos temas generales y un segundo dedicado a temas específicos de EGB. Posteriormente, comentamos algunos de estos temas generales del primer bloque para reforzar la forma de llevar a cabo este tipo de metodología, concluyendo con una serie de reflexiones extraídas de la puesta en práctica.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Resumen tomado de la revista. La publicación recoge resumen en Inglés

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La publicación recoge un listado de direcciones web útiles para la enseñanza y aprendizaje de las matemáticas

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Se recopilan un conjunto de experiencias, actividades y juegos llevados a cabo por los autores del trabajo en su actividad docente, sobre el desarrollo lógico-matemático en alumnos de Educación infantil. Para llevar a cabo las actividades utilizan métodos de aprendizaje activos, participativos, comunicativos y cooperativos. De cada experiencia se especifica la edad de los alumnos a los que va dirigida, su temporalización, los contenidos que se trabajan, cómo se desarrolla la actividad y una valoración de la misma.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Resumen tomado de la revista

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Este artículo es fruto de las investigaciones realizadas por el Grupo de Trabajo 'Internet y Calculadoras Gráficas' del CPR de Ciudad Lineal desarrollado por el Departamento de Matemáticas del IES Salvador Dalí de Madrid, en el curso 98-99. Presenta Internet como herramienta útil para el descubrimiento de las matemáticas y proporciona datos de interés para buscar información matemática a través de la red: buscadores generales, buscadores matemáticos, links, trucos para no desesperar en las búsquedas por la red, páginas institucionales, páginas de centros de enseñanza y páginas personales, y accesos fáciles a software de matemáticas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Esta actividad forma parte de la obra 'Aprende Física en el Parque de Atracciones'. Colección Materiales Curriculares, n. 15. Consejería de Educación, 2001, de los mismos autores

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Resumen basado en el que aporta la revista.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Resumen tomado de la revista.- Este número de la revista está dedicado a las Dificultades y Obstáculos para el cambio en el aula (I)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Se propone un modelo didáctico en el que a través de la experiencia se llega a la teoría. Está especialmente dirigido al tercer ciclo de educación primaria y el primer ciclo de la educación secundaria. La experiencia persigue la utilización de paréntesis y corchetes en el área de matemáticas..

Relevância:

20.00% 20.00%

Publicador:

Resumo:

El zoológico de la ciudad italiana de Pistoia dispone de una infraestructura especial: El Laboratorio de la Biodiversidad, donde los alumnos pueden experimentar y aprender, con todos los sentidos, de manera directa y lúdica, transmitiéndoles el valor de la conservación de la biodiversidad animal y vegetal. Describe una de las actividades, titulada 'el bosque', desarrollada por alumnos de entre 5 y 7 años.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Resumen basado en el que aporta la revista.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Las aportaciones de autores españoles en el campo de las matemáticas no son significativos hasta mediados del siglo XIX. Con la resolución ideológica de 1868 empieza la recuperación científica en España, se traducen textos europeos, y los mejores matemáticos del país presentan nuevas teorías. A principios del siglo XX son importantes los avances físicos y matemáticos de José Echegaray, presidente varios años de la Sociedad Matemática Española, de Zoel García de Galdeano, de Eduardo Torroja, y de Ventura Reyes y Prósper. Estos y otros autores consiguen modernizar las matemáticas españoles y homologarlas con Europa hacia 1930..

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Existe un interés por la poesía que los niños manifiestan desde muy pequeños. Se narra la puesta en marcha de un laboratorio poético desarrollado en Educación Infantil en el que se trabaja con el lenguaje y con las emociones a través de la poesía. Se trata de enseñar a los alumnos la técnica que esconde la poesía, e invitarles a convertirse en poetas, desarrollando así su expresión escrita. El profesor debe ser capaz de estimular la creatividad de los niños, de invitarles a jugar con el lenguaje y para ello ha de potenciar dinámicas que fomenten el trabajo en grupo. Las sesiones son prácticas y se requiere una cuidada selección de textos. Primero se crea el poema y luego se reflexiona sobre las herramientas de la lengua utilizadas en él. Se trabaja sobre diferentes conceptos: el punto y aparte, los tiempos verbales, la acentuación, los pronombres, los campos semánticos, etcétera. El resultado es una lectura en voz alta de los poemas, así como el análisis del material usado para percibir el avance que se produce entre los primeros y los últimos poemas.