361 resultados para ULTRATHIN


Relevância:

20.00% 20.00%

Publicador:

Resumo:

By analysing the carrier dynamics based on the rate equations and the change of the refractive index due to the efficient carrier capture, we have calculated the carrier capture process in the InAs/GaAs system detected by a simple degenerate pump-probe technique. The calculated results are found to be in good agreement with the experimental findings. Our results indicate that this simple technique, with the clear advantage of being easy to carry out, can be very useful in studying the carrier dynamics for some specific structures such as InAs ultrathin layers embedded in a GaAs matrix described here.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Effect of surface structures upon ultrathin film interference fringes generated from extremely thin films or epitaxial layers grown on semiconductor wafers has been studied. Since dark regions of fringes correspond to the places where the thin films are destroyed or absent, the fringes are investigated to detect uneven surfaces with undesired structures. Therefore, surface microstructures can be detected and characterized effectively by the modification of the fringes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Raman spectra of (GaAs)n1/(AlAs)n2 ultrathin-layer superlattices were measured at room temperature and under off-resonance conditions. The experimental results show that there are two effects in ultrathin-layer superlattices: the confinement effect of LO phonons and the alloy effect. It is found that the relative intensity of the disorder-activated TO mode can give a measure of the alloy effect. The Raman spectra of one-monolayer superlattices measured in various scattering configurations are very similar to those of the Al0.5Ga0.5As alloy, and thus the alloy effect is prominent. However, in the case of monolayer number n greater-than-or-equal-to 4, the confined effect is prominent, while the alloy effect is only shown as an interface effect.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

GaAs epilayers grown on Si by metalorganic chemical vapor deposition (MOCVD) using an ultrathin a-Si buffer layer were characterized by deep-level transient spectroscopy (DLTS). Six electron traps with activation energies of 0.79, 0.67, 0.61, 0.55, 0.53 and 0.32 eV below the conduction band were determined by fitting the experimental spectra. Two of the levels, C (0.61 eV) and F (0.32 eV), were first detected in GaAs epilayers on Si and identified as the metastable defects M3 and M4, respectively. In order to improve the quality of GaAs/Si epilayers, another GaAs layer was grown on the GaAs/Si epilayers grown using MOCVD. The deep levels in this regrown GaAs epilayer were also studied using DLTS. Only the EL2 level was found in the regrown GaAs epilayers. These results show that the quality of the GaAs epilayer was greatly improved by applying this growth process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ultrathin single quantum well (about one monolayer) grown on GaAs(001) substrate with GaAs cap layer has been studied by high resolution x-ray diffractometer on a beamline of the Beijing Synchrotron Radiation Facility. The interference fringes on both sides of the GaAs(004) Bragg peak are asymmetric and a range of weak fringes in the higher angle side of the Bragg peak is observed. The simulated results by using the kinematical diffraction method shows that the weak fringe range appears in the higher angle side when the phase shift introduced by the single quantum well is very slightly smaller than m pi (m:integer), and vice versa. After introducing a reasonable model of single quantum well, the simulated pattern is in good agreement with the experiment. (C) 1996 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The origin of the flat band voltage roll-off (V-FB roll-off) in metal gate/high-k/ultrathin-SiO2/Si metal-oxide-semiconductor stacks is analyzed and a model describing the role of the dipoles at the SiO2/Si interface on the V-FB sharp roll-off is proposed. The V-FB sharp roll-off appears when the thickness of the SiO2 interlayer diminishes to below the oxygen diffusion depth. The results derived using our model agree well with experimental data and provide insights to the mechanism of the V-FB sharp roll-off.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The deliberate tailoring of hierarchical flowerlike gold microstructure (HFGMs) at the ultrathin level is an ongoing challenge and could introduce opportunities for new fabrication and application in many fields. In this paper. a templateless, surfactantless, electrochemical strategy for fabrication of ultrathin platinum-group metal coated HFGMs is proposed. HFGMs were prepared by simple electrodeposition on an indium tin oxide (ITO) substrate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The large-size domain and continuous para-sexiphenyl (p-6P) ultrathin film was fabricated successfully on silicon dioxide (SiO2) substrate and investigated by atomic force microscopy and selected area electron diffraction. At the optimal substrate temperature of 180 degrees C, the first-layer film exhibits the mode of layer growth, and the domain size approaches 100 mu m(2). Its saturated island density (0.018 mu m(-2)) is much smaller than that of the second-layer film (0.088 mu m(-2)), which begins to show the Volmer-Weber growth mode.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The para-sexiphenyl (p-6P) monolayer film induces weak epitaxy growth (WEG) of disk-like organic semiconductors, and their charge mobilities are increased dramatically to the level of the corresponding single crystals [Wang et al., Adv. Mater. 2007, 19, 2168]. The growth behavior and morphology of p-6P monolayer film play decisive roles on WEG. Here, we investigated the growth behavior of p-6P submonolayer film as a function of the substrate temperature. Its growth exhibited two different mechanisms at high and low substrate temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polyelectrolyte-functionalized ionic liquid (PFIL) and Prussian blue (PB) nanoparticles were used to fabricate ultrathin films on the ITO substrate through electrostatic layer-by-layer assembly method. Multilayer growth was examined by UV-vis spectroscopy and cyclic voltammetry. The resulting ITO/(PFIL/PB)n electrode showed two couples of well-defined redox peaks and good electrocatalytical activity towards the reduction of hydrogen peroxide.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two kinds of dewetting and their transition induced by composition fluctuation due to different composition in blend [poly(methyl methacrylate) (PMMA) and poly(styrene-ran-acrylonitrile) (SAN)] films on SiOx substrate at 145 degrees C have been studied by in-situ atomic force microscopy (AFM). The results showed that morphology and pathway of dewetting depended crucially on the composition. Possible reason is the variation in intensity of composition fluctuation resulted from the change of components in polymer blend. Based on the discussion of this fluctuation due to the composition gradient, parameter of U-q0/E, which describes the initial amplitude of the surface undulation and original thickness of film respectively, has been employed to distinguish the morphologies of spontaneous dewetting including bicontinuous structures and holes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Herein, an insulating fluorinated polyimide (F-PI) is utilized as an ultrathin buffer layer of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) in polymer light-emitting diodes to enhance the device performance. The selective solubility of F-PI in common solvents avoids typical intermixing interfacial problems during the sequential multilayer spin-coating process. Compared to the control device, the F-PI modification causes the luminous and power efficiencies of the devices to be increased by a factor of 1.1 and 4.7, respectively, along with almost 3-fold device lifetime enhancement. Photovoltaic measurement, single-hole devices, and X-ray photoelectron spectroscopy, are utilized to investigate the underlying, mechanisms, and it is found that the hole injection barrier is lowered owing to the interactions between the PEDOT:PSS and F-PI. The F-PI modified PEDOT:PSS layer demonstrates step-up ionization potential profiles from the intrinsic bulk PEDOT:PSS side toward the F-PI-modified PEDOT:PSS surface, which facilitate the hole injection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Efficient inverted top-emitting organic light-emitting diodes with aluminum (Al) as both the cathode and semitransparent anode are investigated. It is found that introduction of the ultrathin molybdenum trioxide (MoO3)/fullerene (C-60) bilayer structure between the low work function Al top anode and the hole-transporting layer dramatically enhances the device performance as compared to the devices with sole MoO3 or C-60 buffer layer. The ultraviolet photoemission spectroscopy and x-ray photoelectron spectroscopy indicate that the hole injection barrier between Al anode and hole-transporting layer is effectively reduced via strong dipole effect at Al/MoO3/C-60 interfaces with its direction pointing from Al to C-60.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The transition of lamellar crystal orientation from flat-on to edge-on in ultrathin films of polystyrene-b-poly(ethylene oxide) (PS-b-PEO) via solvent vapor (toluene) treatment Was investigated. When the as-prepared film was treated in saturated solvent vapor, breakout crystals could form quickly, and then they transformed from square single crystals (flat-on lamellae) to dendrites and finally to nanowire crystals (edge-on lamellae). Initially, heterogeneous nucleation tit the polymer/substrate interface dominated the structure evolution, leading to flat-on lamellar crystals orientation. And the transition from faceted habits to dendrites indicated a transition of underlying mechanism from nucleation-controlled to diffusion-limited growth. As the solvent molecules gradually diffused into the polymer/substrate interface, it will subsequently weaken the polymer-substrate interaction.