985 resultados para Silicon carbide
Resumo:
Fast plasma sintering deposition of SiC nano-structured coatings was achieved using a specially designed non-transferred dc plasma torch operated at reduced pressure. Employing the Taguchi method, the deposition parameters were optimized and verified. With the optimized combination of deposition parameters, homogeneous SiC coatings were deposited on relatively large area substrates of Φ50 mm and 50×50 mm with a deposition rate as high as 20 μm/min. Ablation test showed that such coatings can be used as oxidation resistance coatings in high temperature oxidizing environment.
Resumo:
In the present work specimens of mono-crystalline silicon carbide (4H polytype) were irradiated to three successively increasing ion fluences ranging from 7.2 x 10(14) to 6.0 x 10(16) ions/cm(2) (corresponding to the peak displacement damage of 1, 4 and 13 dpa) with Ne and Xe ions respectively with the energy of 2.3 MeV/amu. The irradiated specimens were subsequently annealed at temperatures of 1173 and 1273 K. Defect structure was investigated with transmission electron microscopy (TEM) using a cross-sectional specimen preparation technique. The typical microstructures of the annealed specimens irradiated with Ne or Xe ions to high fluences are characterized by small gas bubbles in high concentration in the peak damage region and black dots and dislocation loops (located in the basal plane) in a shallower and broader depth region. Larger dislocation loops were observed in the Xe-ion irradiated specimen than in the Ne-ion irradiated specimen at the same peak damage level. The enhanced formation of dislocation loops in the case of Xe-ion irradiation is understandable by assuming stronger inclination of heavier inert-gas atoms to occupy substitute site in the peak damage region.
Resumo:
Hollow carbon nanofibers with circular and rectangular opening were prepared by using electrospun silica fibers as templates. Silica fibers were synthesized by electrospinning, and they were coated with a carbon layer formed by thermal decomposition and carbonization of polystyrene under a nitrogen atmosphere. Hollow carbon nanofibers with circular and rectangular openings were then obtained after the silica core was etched by hydrofluoric acid. The carbon nanofibers with different morphologies also could be used as templates to fabricate silicon carbide fibers. The silicon carbide fibers with circular and rectangular openings could be obtained by using hollow carbon nanofibers and carbon belts as templates, respectively.
Resumo:
Topographic and optical contrasts formed by Ga+ ion irradiation of thin films of amorphous silicon carbide have been investigated with scanning near-field optical microscopy. The influence of ion-irradiation dose has been studied in a pattern of sub-micrometre stripes. While the film thickness decreases monotonically with ion dose, the optical contrast rapidly increases to a maximum value and then decreases gradually. The results are discussed in terms of the competition between the effects of ion implantation and surface milling by the ion beam. The observed effects are important for uses of amorphous silicon carbide thin films as permanent archives in optical data storage applications.