971 resultados para semiconductor quantum wells
Resumo:
Magneto-transport measurements have been carried out on three heavily Si delta-doped In-0.52 Al-0.48 As/In-0.53 Ga-0.47 As/In-0.52 A(10.48) As single quantum well samples in which two subbands were occupied by electrons. The weak anti-localization (WAL) has been found in such high electron mobility systems. The strong Rashba spin-orbit (SO) coupling is due to the high structure inversion asymmetry (SIA) of the quantum wells. Since the WAL theory model is so complicated in fitting our experimental results, we obtained the Rashba SO coupling constant alpha and the zero-field spin splitting Delta(0) by an approximate approach. The results are consistent with that obtained by the Shubnikov-de Haas (SdH) oscillation analysis. The WAL effect in high electron mobility system suggests that finding a useful approach for deducing alpha and Delta(0) is important in designing future spintronics devices that utilize the Rashba SO coupling.
Resumo:
We report the growth of hexagonal ZnO nanorods and nanoflowers on GaN-based LED epiwafer using a solution deposition method. We also discuss the mechanisms of epitaxial nucleation and of the growth of ZnO nanorods and nanoflowers. A GaN-based LED epiwafer was first deposited on a sapphire substrate by MOCVD with no electrode being fabricated on it. Vertically aligned ZnO nanorods with an average height of similar to 2.4 mu m were then grown on the LED epiwafer, and nanoflowers were synthesized on the nanorods. The growth orientation of the nanorods was perpendicular to the surface, and the synthesized nanoflowers were composed of nanorods. The micro-Raman spectra of the ZnO nanorods and nanoflowers are similar and both exhibit the E-2 (high) mode and the second-order multiple-phonon mode. The photoluminescence spectrum of ZnO nanostructures exhibits ultraviolet emission centred at about 380 nm and a broad and enhanced green emission centred at about 526 nm. The green emission of the ZnO nanostructures combined with the emission of InGaN quantum wells provides a valuable method to improve the colour rendering index (CRI) of LEDs.
Resumo:
Rapid thermal annealing (RTA) has been demonstrated as an effective way to improve the crystal quality of GaInNAs(Sb) quantum wells (QWs). However, few investigations have been made into its application in laser growth and fabrication. We have fabricated 1.3 mu m GaInNAs lasers, both as -grown and with post-growth RTA. Enhanced photoluminescence (PL) intensity and decreased threshold current are obtained with RTA, but the characteristic temperature T-o and slope efficiency deteriorate. Furthermore, T-o has an abnormal dependence on the cavity length. We attribute these problems to the deterioration of the wafer's surface. RTA with deposition Of SiO2 was performed to avoid this deterioration, T-o was improved over the samples that underwent RTA without SiO2. Post-growth and in situ annealing were also investigated in a 1.55 mu m GaInNAsSb system. Finally, continuous operation at room temperature of a GaAs-based dilute nitride laser with a wavelength over 1.55 mu m was realized by introducing an in situ annealing process. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
The time evolution of the ground state wave function of an exciton in an ideal bilayer system is investigated within the framework of the effective-mass approximation. All of the moduli squared of the ground state wave functions evolve with time as cosine functions after an in-plane electric field is applied to the bilayer system. The variation amplitude and period of the modulus squared of the ground state wave function increase with the in-plane electric field F-r for a fixed in-plane relative coordinate r and fixed separation d between the electron and hole layers. Moreover, the variation amplitude and period of the modulus squared of the ground state wave function increase with the separation d for a fixed r and fixed in-plane electric field. Additionally, the modulus squared of the ground state wave function decreases as r increases at a given time t for fixed values of d and F-r. (c) 2007 American Institute of Physics.
Resumo:
Unique spin splitting behaviors in ultrathin InAs layers, which show very different spin splitting characteristics between the InAs monolayer (ML) and submonolayer (SML) have been observed. While distinct spin splitting is observed in an InAs ML, no visible spin splitting is found in a 1/3 ML InAs SML. In addition, the spin relaxation time in the 1/3 ML InAs is found to be much longer than that in the 1 ML sample. These results are in good agreement with the theoretical prediction that the interexcitonic exchange interaction plays a dominant role in energy splitting, while the intraexciton exchange interaction controls the spin relaxation. (c) 2007 American Institute of Physics.
Resumo:
In-plane optical anisotropy (IPOA) in (001) GaAs/AlGaAs superlattice induced by uniaxial strain has been investigated by reflectance difference spectroscopy (RDS). Uniaxial strain on the order of 10(-4) was introduced by bending a strip sample with a stress apparatus. The IPOA of all interband transitions shows a linear dependence on strain. The birefringence and dichroism spectra induced by strain are obtained by RDS on the basis of a three-phase model, which is in good agreement with the reported results. (c) 2006 American Institute of Physics.
Resumo:
Sb-doped Zn1-xMgxO films were grown on c-plane sapphire substrates by radio-frequency magnetron sputtering. The p-type conduction of the films (0.05 <= x <= 0.13) was confirmed by Hall measurements, revealing a hole concentration of 10(15)-10(16) cm(-3) and a mobility of 0.6-4.5 cm(2)/V s. A p-n homojunction comprising an undoped ZnO layer and an Sb-doped Zn0.95Mg0.05O layer shows a typical rectifying characteristic. Sb-doped p-type Zn1-xMgxO films also exhibit a changeable wider band gap as a function of x, implying that they can probably be used for fabrication of ZnO-based quantum wells and ultraviolet optoelectronic devices. (c) 2006 American Institute of Physics.
Resumo:
We study theoretically the charge-density and spin-density excitations in a two-dimensional electron gas in the presence of a perpendicular magnetic field and a Rashba type spin-orbit coupling. The dispersion and the corresponding intensity of excitations in the vicinity of cyclotron resonance frequency are calculated within the framework of random phase approximation. The dependence of excitation dispersion on various system parameters, i.e., the Rashba spin-orbit interaction strength, the electron density, the Zeeman spin splitting, and the Coulomb interaction strength is investigated.
Resumo:
1.6-1.7 mu m highly strained InGaAs/InGaAsP distributed feedback lasers was grown and fabricated by low pressure mentalorganic chemical vapor deposition. High quality highly strained InGaAs/InP materials were obtained by using strain buffer layer. Four pairs of highly strained quantum wells were used in the devices and carrier blocking layer was used to improve the temperature characteristics of the devices. The uncoated 1.66 mu m and 1.74 mu m lasers with ridge wave guide 3 mu m wide have low threshold current (< 15mA) and high output power (> 14mW at 100mA). In the temperature range from 10 degrees C to 40 degrees C, the characteristic temperature T-0 of the 1.74 mu m laser is 57K, which is comparable to that of the 1.55 mu m-wavelength InGaAsP/InP-DFB laser.
Resumo:
The authors investigate the spin-polarized transport properties of a two-dimensional electron gas in a n-type diluted magnetic narrow gap semiconductor quantum well subjected to perpendicular magnetic and electric fields. Interesting beating patterns in the magnetoresistance are found which can be tuned significantly by varying the electric field. A resonant enhancement of spin-polarized current is found which is induced by the competition between the s-d exchange interaction and the Rashba effect [Y. A. Bychkov and E. I. Rashba, J. Phys. C 17, 6039 (1984)]. (c) 2006 American Institute of Physics.
Resumo:
We report on structural characterization of AlGaN/GaN superlattices grown on sapphire. The superlattice formation is evidenced by high-resolution x-ray diffraction and transmission electron microscopy. The high resolution x-ray diffraction spectra exhibit a pattern of satellite peaks. The in-plane lattice constants of the superlattices indicate the coherent growth of the AlGaN layer onto GaN. The average At composition in the superlattices is determined to be 0.08 by Rutherford backscattering spectroscopy. The average parallel and perpendicular elastic strains for the SLs are determined to be (e(parallel to)) = +0.25% and (e(perpendicular to)) = -0.17%. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
A series of 1-mu m-thick undoped In0.53Ga0.47As with different substrate growth temperature (T-g) or different beam flux pressure (BFP) of As were grown on lattice-matched semi-insulating InP (001) substrates by molecular beam epitaxy (MBE). Van der Pauw Hall measurements were carried out for these In0.53Ga0.47As samples. The residual electron concentration decreased with increasing temperature from 77 to 140 K, but increased with increasing temperature from 140 to 300 K. Rapid thermal annealing (RTA) can reduce the residual electron concentration. The residual electron mobility increased with increasing temperature from 77 to 300 K. All these electrical properties are associated with As antisite defects. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The Stark effect on excitons in a bilayer system is investigated theoretically within the framework of the effective-mass approximation. The calculations indicate that the energy of the excitons decreases as the value of the in-plane electric field F increases at a fixed value of the distance d between the layers. However, the energy of the excitons increases with d at a fixed value of F. In particular, it increases linearly at small values of d but increases as 1/d at large values. Therefore, it can be concluded that excitons in a bilayer system have a small binding energy equal to the absolute value of the excitonic energy at large d or small F. In addition, the radiative lifetime of heavy-hole excitons in this system is calculated and is found to be short at small values of both F and d. The radiative lifetime of heavy-hole excitons in a bilayer system can be increased by two orders by an in-plane electric field of 2 kV/cm when d is twice the excitonic Rydberg. (c) 2006 American Institute of Physics.
Resumo:
The principle of high-electron-mobility transistor (HEMT) and the property of two-dimensional electron gas (2DEG) have been analyzed theoretically. The concentration and distribution of 2DEG in various channel layers are calculated by numerical method. Variation of 2DEG concentration in different subband of the quantum well is discussed in detail. Calculated results show that sheet electron concentration of 2DEG in the channel is affected slightly by the thickness of the channel. But the proportion of electrons inhabited in different subbands can be affected by the thickness of the channel. When the size of channel lies between 20-25 nm, the number of electrons occupying the second subband reaches the maximum. This result can be used in parameter design of materials and devices.
Resumo:
The converse effects of spin photocurrent and current induced spin polarization are experimentally demonstrated in a two-dimensional electron gas system with Rashba spin splitting. Their consistency with the strength of the Rashba coupling as measured for the same system from beating of the Shubnikov-de Haas oscillations reveals a unified picture for the spin photocurrent, current-induced spin-polarization, and spin-orbit coupling. In addition, the observed spectral inversion of the spin photocurrent indicates a system with dominating structure inversion asymmetry.