910 resultados para Nucleic acids.


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The budding yeast multi-K homology domain RNA-binding protein Scp160p binds to > 1000 messenger RNAs (mRNAs) and polyribosomes, and its mammalian homolog vigilin binds transfer RNAs (tRNAs) and translation elongation factor EF1alpha. Despite its implication in translation, studies on Scp160p's molecular function are lacking to date. We applied translational profiling approaches and demonstrate that the association of a specific subset of mRNAs with ribosomes or heavy polysomes depends on Scp160p. Interaction of Scp160p with these mRNAs requires the conserved K homology domains 13 and 14. Transfer RNA pairing index analysis of Scp160p target mRNAs indicates a high degree of consecutive use of iso-decoding codons. As shown for one target mRNA encoding the glycoprotein Pry3p, Scp160p depletion results in translational downregulation but increased association with polysomes, suggesting that it is required for efficient translation elongation. Depletion of Scp160p also decreased the relative abundance of ribosome-associated tRNAs whose codons show low potential for autocorrelation on mRNAs. Conversely, tRNAs with highly autocorrelated codons in mRNAs are less impaired. Our data indicate that Scp160p might increase the efficiency of tRNA recharge, or prevent diffusion of discharged tRNAs, both of which were also proposed to be the likely basis for the translational fitness effect of tRNA pairing.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The nuclear antisense properties of a series of tricyclo(tc)-DNA oligonucleotide 9-15mers, targeted against the 3' and 5' splice sites of exon 4 of cyclophilin A (CyPA) pre-mRNA, were evaluated in HeLa cells and compared with those of corresponding LNA-oligonucleotides. While the 9mers showed no significant antisense effect, the 11-15mers induced exon 4 skipping and exon 3+4 double skipping to about an equal extent upon lipofectamine mediated transfection in a sequence and dose dependent manner, as revealed by a RT-PCR assay. The antisense efficacy of the tc-oligonucleotides was found to be superior to that of the LNA-oligonucleotides in all cases by a factor of at least 4-5. A tc-oligonucleotide 15mer completely abolished CyPA mRNA production at 0.2‘M concentration. The antisense effect was confirmed by western blot analysis which revealed a reduction of CyPA protein to 13% of its normal level. Fluorescence microscopic investigations with a fluorescein labeled tc-15mer revealed a strong propensity for homogeneous nuclear localization of this backbone type after lipofectamine mediated transfection, while the corresponding lna 15mer showed a less clear cellular distribution pattern. Transfection without lipid carrier showed no significant internalization of both tc- and LNA-oligonucleotides. The obtained results confirm the power of tricyclo-DNA for nuclear antisense applications. Morover, CyPA may become an interesting therapeutic target due to its important role in the early steps of the viral replication of HIV-1.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

During the development of the somatic genome from the Paramecium germline genome the bulk of the copies of ∼45 000 unique, internal eliminated sequences (IESs) are deleted. IES targeting is facilitated by two small RNA (sRNA) classes: scnRNAs, which relay epigenetic information from the parental nucleus to the developing nucleus, and iesRNAs, which are produced and used in the developing nucleus. Why only certain IESs require sRNAs for their removal has been enigmatic. By analyzing the silencing effects of three genes: PGM (responsible for DNA excision), DCL2/3 (scnRNA production) and DCL5 (iesRNA production), we identify key properties required for IES elimination. Based on these results, we propose that, depending on the exact combination of their lengths and end bases, some IESs are less efficiently recognized or excised and have a greater requirement for targeting by scnRNAs and iesRNAs. We suggest that the variation in IES retention following silencing of DCL2/3 is not primarily due to scnRNA density, which is comparatively uniform relative to IES retention, but rather the genetic properties of IESs. Taken together, our analyses demonstrate that in Paramecium the underlying genetic properties of developmentally deleted DNA sequences are essential in determining the sensitivity of these sequences to epigenetic control.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Type I interferons (IFNs), mainly IFN-α/β play a crucial role in innate defense against viruses. In addition to their direct antiviral activity, type I IFNs have antitumoral and immunomodulatory effects. Although all cells are virtually able to induce IFN-α, the plasmacytoid dendritic cell (pDC) subset represents the ultimate producers of IFN-α as well as other proinflammatory cytokines. Due to the specific expression of TLR7 and TLR9 recognizing single-stranded (ss) RNA and unmethylated CpG motifs respectively, pDCs can secrete up to 1000 times more IFN-α than any cellular types. Additionally, it is well known that several cytokines including type I and II IFNs, Flt3-L, IL-4 and GM-CSF favor pDC-derived IFN-α responses to unmethylated CpG motifs. In a first step, we aimed to characterize and clarify the interactions of two porcine viruses with pDCs. The double-stranded DNA replicative forms of porcine circovirus type 2 (PCV2) were demonstrated to inhibit CpG-induced IFN- α by pDCs. Our study showed that none of the cytokines known to enhance pDC responsiveness can counter-regulate the PCV2-mediated inhibition of IFN-α induced by CpG, albeit IFN-γ significantly reduced the level of inhibition. Interestingly, the presence of IFN-γ enabled pDCs to induce IFN-α to low doses of PCV2. We also noted that after DNase treatment, PCV2 preparations were still able to stimulate pDCs. These data suggest that encapsulated viral ssDNA promotes the induction of IFN-α in pDCs treated with IFN-γ whereas free DNA, presumably as double-stranded forms, was responsible for inhibiting pDC responses. Regarding PRRSV, it has been reported that North American isolates did not induce and even inhibited IFN-α response in pDCs. However, PRRSV infection was also shown to lead to an induction of IFN-α in the serum and in the lungs suggesting that certain cells are responsive to the virus. Contrasting to previous reports we found that numerous PRRSV isolates directly induced IFN-α in pDCs. This response was still observed after UV-inactivation of viruses and required TLR7 signaling. The inhibition of CpG-induced IFN-α was weak and strain dependent, again contrasting with a previous report. We also observed that IFN-γ and IL-4 enhanced IFN-α response to two prototype strains, VR-2332 and LVP23. In summary, we demonstrated that both PCV2 and PRRSV promote IFN-α secretion in pDCs in vitro suggesting that IFN-α detected in PCV2- or PRRSV-infected animal might originate from pDCs. On the other hand, PRRSV replication is restricted to the macrophage (MΦ) lineage. These innate immune cells represent a heterogeneous population which can be induce to “classical” (M1) and “alternative” (M2) activated MΦ acquiring inflammatory or “wound-healing” functional properties, respectively. Nonetheless, little is known about the effect of polarization into M1 or M2 and the susceptibility of these cells to PRRSV. Thus, we examined the impact of cytokine on MΦ polarization into M1 or M2. Infections of these cells by several PRRSV isolates enabled the discrimination of PRRSV isolate in a genotype- and irulencedependent manner in M1 and IFN-β-activated MΦ. In contrast, the expression of PRRSV nucleocapsid in M2 or inactivated MΦ was indistinguishable among the PRRSV isolates tested. In the last part of my Thesis, we investigated the influence of three synthetic porcine cathelicidin peptides for their ability to deliver nucleic acid to pDCs. We reported that all cathelicidins tested can complex and quickly deliver nucleic acids resulting in IFN-α induction. Moreover, we show that the typical α- helical amphipathic conformation is required to mediate killing of bacteria but not for inducing IFN-α secretion by pDCs. Furthermore, we found that E.coli treated with one of these cathelicidins is able to induce significantly higher levels of IFN-α compared to a non-sense version of the peptide. These data suggest that cathelicidins could influence the immune response in a two-step process. First, these peptides target bacteria leading to cell lysis. In turn, cathelicidins form complexes and deliver extracellular microbial nucleic acids released into pDCs. These pDC-derived IFN-α responses could be of particular relevance in driving the adaptive immune responses against microbial infections.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Eukaryotic mRNAs with premature translation-termination codons (PTCs) are recognized and eliminated by nonsense-mediated mRNA decay (NMD). NMD substrates can be degraded by different routes that all require phosphorylated UPF1 (P-UPF1) as a starting point. The endonuclease SMG6, which cleaves mRNA near the PTC, is one of the three known NMD factors thought to be recruited to nonsense mRNAs via an interaction with P-UPF1, leading to eventual mRNA degradation. By artificial tethering of SMG6 and mutants thereof to a reporter mRNA combined with knockdowns of various NMD factors, we demonstrate that besides its endonucleolytic activity, SMG6 also requires UPF1 and SMG1 to reduce reporter mRNA levels. Using in vivo and in vitro approaches, we further document that SMG6 and the unique stalk region of the UPF1 helicase domain, along with a contribution from the SQ domain, form a novel interaction and we also show that this region of the UPF1 helicase domain is critical for SMG6 function and NMD. Our results show that this interaction is required for NMD and for the capability of tethered SMG6 to degrade its bound RNA, suggesting that it contributes to the intricate regulation of UPF1 and SMG6 enzymatic activities.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tandem mass spectrometry is a well-established analytical tool for rapid and reliable characterization of oligonucleotides (ONs) and their gas-phase dissociation channels. The fragmentation mechanisms of native and modified nucleic acids upon different mass spectrometric activation techniques have been studied extensively, resulting in a comprehensive catalogue of backbone fragments. In this study, the fragmentation behavior of highly charged oligodeoxynucleotides (ODNs) comprising up to 15 nucleobases was investigated. It was found that ODNs exhibiting a charge level (ratio of the actual to the total possible charge) of 100% follow significantly altered dissociation pathways compared with low or medium charge levels if a terminal pyrimidine base (3' or 5') is present. The corresponding product ion spectra gave evidence for the extensive loss of a cyanate anion (NCO–), which frequently coincided with the abstraction of water from the 3'- and 5'-end in the presence of a 3'- and 5'-terminal pyrimidine nucleobase, respectively. Subsequent fragmentation of the MNCO– ion by MS3 revealed a so far unreported consecutive excision of a metaphosphate (PO3–)-ion for the investigated sequences. Introduction of a phosphorothioate group allowed pinpointing of PO3– loss to the ultimate phosphate group. Several dissociation mechanisms for the release of NCO– and a metaphosphate ion were proposed and the validity of each mechanism was evaluated by the analysis of backbone- or sugar modified ONs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have analyzed the chromatin structure of the porcine tumor necrosis factor gene locus (TNF-alpha and TNF-beta). Nuclei from porcine peripheral blood mononuclear cells were digested with different nucleases. As assessed with micrococcal nuclease, the two TNF genes displayed slightly faster digestion kinetics than bulk DNA. Studies with DNaseI revealed distinct DNaseI hypersensitive sites (DH-sites) within the porcine TNF locus. Four DH-sites could be observed in the promoter and mRNA leader regions of the TNF-beta gene. Two DH-sites could be observed for the TNF-alpha gene, one located in the promoter region close to the TATA-box and the other site in intron 3. This pattern of DH-sites was present independently of the activation state of the cells. Interestingly in a porcine macrophage-like cell line, we found that the TNF-alpha promoter DH-site disappeared and another DH-site appeared in the region of intron 1. Additionally, the DH-site of intron 3 could be enhanced by PMA-stimulation in these cells. TNF-beta sites were not detected in this cell line. However, DH-sites were totally absent in fibroblasts (freshly isolated from testicles) and in porcine kidney cells (PK15 cell line) both of which do not transcribe the TNF genes. Therefore, the pattern of DH-sites corresponds to the transcriptional activity of analyzed cells.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Self-amplifying replicon RNA (RepRNA) possesses high potential for increasing antigen load within dendritic cells (DCs). The major aim of the present work was to define how RepRNA delivered by biodegradable, chitosan-based nanoparticulate delivery vehicles (nanogel-alginate (NGA)) interacts with DCs, and whether this could lead to translation of the RepRNA in the DCs. Although studies employed virus replicon particles (VRPs), there are no reports on biodegradable, nanoparticulate vehicle delivery of RepRNA. VRP studies employed cytopathogenic agents, contrary to DC requirements-slow processing and antigen retention. We employed noncytopathogenic RepRNA with NGA, demonstrating for the first time the efficiency of RepRNA association with nanoparticles, NGA delivery to DCs, and RepRNA internalization by DCs. RepRNA accumulated in vesicular structures, with patterns typifying cytosolic release. This promoted RepRNA translation, in vitro and in vivo. Delivery and translation were RepRNA concentration-dependent, occurring in a kinetic manner. Including cationic lipids with chitosan during nanoparticle formation enhanced delivery and translation kinetics, but was not required for translation of immunogenic levels in vivo. This work describes for the first time the characteristics associated with chitosan-nanoparticle delivery of self-amplifying RepRNA to DCs, leading to translation of encoded foreign genes, namely influenza virus hemagglutinin and nucleoprotein.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A novel synthesis of 2'-deoxypseudoisocytidine as well as of its phosphoramidite building block for oligonucleotide synthesis is presented. The synthesis is based on Heck-coupling between N-protected pseudoisocytosine and a silyl protected furanoid glycal. With this procedure the corresponding phosphoramidite building block is obtained in 5 steps and an overall yield of 28%.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We synthesized the phosphinate 7 via photoaddition of methanol to the alpha, beta unsaturated deoxyribono lactone as the key step, followed by an Arbusov reaction for the introduction of phosphorous. Precursor 7 serves for the synthesis and incorporation into DNA of a novel chemically stable abasic site analogue that might act as an inhibitor for DNA glycosylases

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We synthesized pyrrolidino-C-nucleosides, incorporated them into oligodeoxynucleotides and investigated their pairing properties. The thermal duplex and triplex stabilities were measured. While triplex formation is destabilized in the case of pyrrolidino-pseudo-U and -T, pyrrolidino-pseudo-iso-C leads to an increase of the Tm value for third strand dissociation. Duplexes are destabilized with all pyrrolidino-C-nucleosides

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A new nucleoside designed to enhance triplex stability has been synthesised in 15 steps starting from sugar 2. This pathway contains the sugar derivative 9 which is a useful intermediate for the introduction of other natural and unnatural bases into the 2'-aminoethoxy nucleoside containing scaffold

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The base modified nucleoside dBP, carrying a non-hydrogen-bonding non-shape complementary base was incorporated into oligonucleotides (Brotschi, C.; Haberli, A.; Leumann C.J. Angew. Chem. Int. Ed. 2001, 40, 3012-3014). This base was designed to coordinate transition metal ions into well defined positions within a DNA double helix. Melting experiments revealed that the stability of a dBP:dBP base couple in a DNA duplex is similar to a dG:dC base pair even in the absence of transition metal ions. In the presence of transition metal ions, melting experiments revealed a decrease in duplex stability which is on a similar order for all metal ions (Mn2+, Cu2+, Zn2+, Ni2+) tested

Relevância:

60.00% 60.00%

Publicador:

Resumo:

cpa-DNA monomers containing the bases adenine and thymine have been synthesized starting from the known compound 1 in 12 steps. Partially and fully modified cpa-thymidine and cpa-adenosine containing oligodeoxynucleotides were synthesized by standard oligonucleotide chemistry. Fully modified homo-cpa-A sequences lead to duplex destabilization by -1.4 degrees C/mod. relative to DNA. As its congener bca-DNA, cpa-DNA prefers left-handed duplex formation where possible