904 resultados para ultra-low pressure
Resumo:
A 1.3-mu m AlGaInAs/InP buried heterostructure (BH) stripe distributed feedback laser with a novel AlInAs/InP complex-coupled grating grown by low-pressure metalorganic chemical vapor deposition (LP-MOCVD) is proposed and demonstrated. A high characteristic temperature (T-0 = 90K between 20-80 degrees C) and temperature-insensitive slope efficiency (0.25 dB drop from 20 to 80 degrees C) in 1.3 mu m AlGaInAs/InP DFB lasers was obtained by introducing AI(Ga)InAs graded-index separate-confinement heterostructure (GRINSCH) layers and a strained-compensated (SC) multi-quantum well (MQW).
Resumo:
Cubic GaN was grown on GaAs(100) by low pressure metal organic chemical vapor deposition (MOCVD). X-ray diffraction, scanning electron microscope (SEM) and photoluminescence (PL) spectra were performed to characterize the quality of the GaN film. The PL spectra of cubic GaN thin films being thicker than 1.5 mu m were reported. Triple-crystal diffraction to analyze orientation distributions and strain of the thin films was also demonstrated.
Resumo:
In this contribution we report the research and development of 1.55 mu m InGaAsP/InP gain-coupled DFB laser with an improved injection-carrier induced grating and of high performance 1.3 mu m and 1.55 mu m InGaAsP/InP FP and DFB lasers for communications. Long wavelength strained MQW laser diodes with a very low threshold current (7-10 mA) have been fabricated. Low pressure MOVPE technology has been employed for the preparation of the layered structure. A novel gain-coupled DFB laser structure with an improved injection-carrier modulated grating has been proposed and fabricated. The laser structures have been prepared by hybrid growth of MOVPE and LPE techniques and reasonably good characteristics have been achieved for resultant lasers. High performance 1.3 mu m and 1.55 mu m InGaAsP/InP DFB lasers have successfully been developed for CATV and trunk line optical fiber communication.
Resumo:
650 nm-range AlGaInP multi-quantum well (MQW) laser diodes grown by low pressure metal organic chemical vapor deposition (LP-MOCVD) have been studied and the results are presented in this paper. Threshold current density of broad area contact laser diodes can be as low as 350 A/cm(2). Laser diodes with buried-ridge strip waveguide structures were made, threshold currents and differential efficiencies are (22-40) mA and (0.2-0.7) mW/mA, respectively. Typical output power for the laser diodes is 5 mW, maximum output power of 15 mW has been obtained. Their operation temperature can be up to 90 degrees C under power of 5 mW. After operating under 90 degrees C and 5 mW for 72 hrs, the average increments for the threshold currents of the lasers at 25 degrees C and the operation currents at 5 mW (at 25 degrees C) are (2-3) mA and (3-5) mA, respectively. Reliability tests showed that no obvious degradation was observed after 1400 hours of CW operation under 50 degrees C and 2.5 mW.
Resumo:
Both Fourier transform infrared (FTIR) grazing incidence reflectivity and FTIR transmission methods have been used to study GaN films grown on alpha-Al2O3 (0001) substrates by atmospheric pressure metal-organic chemical vapor deposition and low pressure metal-organic chemical vapor deposition. The results show that in the frequency range from 400 to 3500 cm(-1) the signal-to-noise ratio of the FTIR grazing incidence measurement is far higher than that of the FTIR transmission measurement. Some new vibrational structures appearing in the former measurement have been discussed. The features around 1460 and 1300 cm(-1) are tentatively assigned to scissoring and wagging local vibrational modes of CH2 in GaN, respectively. (C) 1999 American Institute of Physics. [S0021-8979(99)06509-3].
Resumo:
Single crystal GaN films have been grown on to an Al2O3 coated (001)Si substrate in a horizontal-type low-pressure MOVPE system. A thin Al2O3 layer is an intermediate layer for the growth of single crystal GaN on to Si although it is only an oriented polycrystal him as shown by reflection high electron diffraction. Moreover, the oxide was not yet converted to a fully single crystal film, even at the stage of high temperature for the GaN overlayer as studied by transmission electron microscopy. Double crystal X-ray diffraction showed that the linewidth of (0002) peak of the X-ray rocking curve of the 1.3 mu m sample was 54 arcmin and the films had heavy mosaic structures. A near band edge peaking at 3.4 eV at room temperature was observed by photoluminescence spectroscopy. (C) 1998 Elsevier Science B.V. All rights reserved.
Resumo:
The growth of wurtzite GaN by low-pressure metalorganic vapor-phase epitaxy on (1 1 1) magnesium aluminate (MgAl2O4) substrates have been studied. The morphological, crystalline, electrical and optical properties are investigated. A p-n junction GaN LED was fabricated on the MgAl2O4 substrate. (C) 1998 Elsevier Science B.V. All rights reserved.
Resumo:
Single crystal GaN films of hexagonal modification have been fabricated on Al2O3/Si (001) substrates via a low pressure metalorganic chemical deposition (LP-MOCVD) method. The full width at half-maximum of (0002) X-ray diffraction peak for the GaN film 1.1 mu m thick was 72 arcmin. and the mosaic structure of the film was the main cause of broadening to the X-ray diffraction peak. Al room temperature, the photoluminescence (PL) spectrum of GaN exhibited near band edge emission peaking at 365 nm.
Resumo:
Wurtzite GaN films have been grown on (001) Si substrates using gamma-Al2O3 as an intermediate layer by low pressure (similar to 76 Torr) metalorganic chemical vapor deposition. Reflection high energy electron diffraction and double crystal x-ray diffraction measurements revealed that the thin gamma-Al2O3 layer of "compliant" character was an effective intermediate layer for the GaN film grown epitaxially on Si. The narrowest linewidth of the x-ray rocking curve for (0002) diffraction of the 1.3 mu m GaN sample was 54 arcmin. The orientation relationship of GaN/gamma-Al2O3/Si was (0001) GaN parallel to(001) gamma-Al2O3 parallel to(001) Si, [11-20] GaN parallel to[110] gamma-Al2O3 parallel to[110] Si. The photoluminescence measurement for GaN at room temperature exhibited a near band-edge peak of 365 nm (3.4 eV). (C) 1998 American Institute of Physics.
Resumo:
Single-electron devices (SEDs) have ultra-low power dissipation and high integration density, which make them promising candidates as basic circuit elements of the next generation VLSI circuits. In this paper, we propose two novel circuit single-electron architectures: the single-electron simulated annealing algorithm (SAA) circuit and the single-electron cellular neural network (CNN). We used the MOSFET-based single-electron turnstile [1] as the basic circuit element. The SAA circuit consists of the voltage-controlled single-electron random number generator [2] and the single-electron multiple-valued memories (SEMVs) [3]. The random-number generation and variable variations in SAA are easily achieved by transferring electrons using the single-electron turnstile. The CNN circuit used the floating-gate single-electron turnstile as the neural synapses, and the number of electrons is used to represent the cells states. These novel circuits are promising in future nanoscale integrated circuits.
Resumo:
The article mainly focuses on the simulation of the single electron device and circuit. The orthodox model of single electronic device is introduced and the simulation with Matlab and Pspice is illustrated in the article. Moreover, the built of robust circuit using single electronic according to neural network is done and the simulation is also included in the paper. The result shows that neural network added with proper redundancy is an available candidate for single electron device circuit. The proposed structure is also promising for the realization of low ultra-low power consumption and solution of transient device failure.
Resumo:
Nano-patterning sapphire substrates technique has been developed for nitrides light-emitting diodes (LEDs) growths. It is expected that the strain induced by the lattice misfits between the GaN epilayers and the sapphire substrates can be effectively accommodated via the nano-trenches. The GaN epilayers grown on the nano-patterned sapphire substrates by a low-pressure metal organic chemical vapor deposition (MOCVD) are characterized by means of scanning electron microscopy (SEM), high-resolution x-ray diffraction (HRXRD) and photoluminescence (PL) techniques. In comparison with the planar sapphire substrate, about 46% increment in device performance is measured for the InGaN/GaN blue LEDs grown on the nano-patterned sapphire substrates.
Resumo:
High performance InGaAsP/InGaAsP strained compensated multiple-quantum-well (MQW) electroabsorption modulators (EAM) monolithically integrated with a DFB laser diode have been designed and realized by ultra low metal-organic vapor phase epitaxy (MOVPE) based on a novel butt joint scheme. The optimization thickness of upper SCH layer for DFB and EAM was obtained of the proposed MQW structure of the EAM through numerical simulation and experiment. The device containing 250(mu m) DFB and 170(mu m) EAM shows good material quality and exhibits a threshold current of 17mA, an extinction ratio of higher than 30 dB and a very high modulation efficiency (12dB/V) from 0V to 1V. By adopting a high-mesa ridge waveguide and buried polyimide, the capacitance of the modulator is reduced to about 0.30 pF corresponding to a 3dB bandwidth more than 20GHz.
Resumo:
Using AlN as a buffer layer, 3C-SiC film has been grown on Si substrate by low pressure chemical vapor deposition (LPCVD). Firstly growth of AlN thin films on Si substrates under varied V/III ratios at 1100 degrees was investigated and the (002) preferred orientational growth with good crystallinity was obtained at the V/III ratio of 10000. Annealing at 1300 degrees C indicated the surface morphology and crystallinity stability of AlN film. Secondly the 3C-SiC film was grown on Si substrate with AlN buffer layer. Compared to that without AlN buffer layer, the crystal quality of the 3C-SiC film was improved on the AlN/Si substrate, characterized by X-ray diffraction (XRD) and Raman measurements.
Resumo:
An AlGaN/GaN HBT structure was grown by low-pressure metalorganic chemical vapor deposition (MOCVD) on sapphire substrate. From the high-resolution x-ray diffraction and transmission electron microscopy (TEM) measurements, it was indicated that the structure is of good quality and the AlGaN/GaN interfaces are abrupt and smooth. In order to obtain the values of Si doping and electronic concentrations in the AlGaN emitter and GaN emitter cap layers, Secondary Ion Mass Spectroscopy (SIMS) and electrochemical CV measurements were carried out. The results showed that though the flow rate of silane (SiH4) in growing the AlGaN emitter was about a quarter of that in growing GaN emitter cap and subcollector layer, the Si sputtering yield in GaN cap layer was much smaller than that in the AlGaN emitter layer. The electronic concentration in GaN was about half of that in the AlGaN emitter layer. It is proposed that the Si, Al co-doping in growing the AlGaN emitter layer greatly enhances the Si dopant efficiency in the AlGaN alloy. (c) 2006 WILEY-VCH Verlag GmbH & Co KGaA, Weinheim.