11 resultados para ultra-low pressure
em CaltechTHESIS
Resumo:
Part I:
The earth's core is generally accepted to be composed primarily of iron, with an admixture of other elements. Because the outer core is observed not to transmit shear waves at seismic frequencies, it is known to be liquid or primarily liquid. A new equation of state is presented for liquid iron, in the form of parameters for the 4th order Birch-Murnaghan and Mie-Grüneisen equations of state. The parameters were constrained by a set of values for numerous properties compiled from the literature. A detailed theoretical model is used to constrain the P-T behavior of the heat capacity, based on recent advances in the understanding of the interatomic potentials for transition metals. At the reference pressure of 105 Pa and temperature of 1811 K (the normal melting point of Fe), the parameters are: ρ = 7037 kg/m3, KS0 = 110 GPa, KS' = 4.53, KS" = -.0337 GPa-1, and γ = 2.8, with γ α ρ-1.17. Comparison of the properties predicted by this model with the earth model PREM indicates that the outer core is 8 to 10 % less dense than pure liquid Fe at the same conditions. The inner core is also found to be 3 to 5% less dense than pure liquid Fe, supporting the idea of a partially molten inner core. The density deficit of the outer core implies that the elements dissolved in the liquid Fe are predominantly of lower atomic weight than Fe. Of the candidate light elements favored by researchers, only sulfur readily dissolves into Fe at low pressure, which means that this element was almost certainly concentrated in the core at early times. New melting data are presented for FeS and FeS2 which indicate that the FeS2 is the S-hearing liquidus solid phase at inner core pressures. Consideration of the requirement that the inner core boundary be observable by seismological means and the freezing behavior of solutions leads to the possibility that the outer core may contain a significant fraction of solid material. It is found that convection in the outer core is not hindered if the solid particles are entrained in the fluid flow. This model for a core of Fe and S admits temperatures in the range 3450K to 4200K at the top of the core. An all liquid Fe-S outer core would require a temperature of about 4900 K at the top of the core.
Part II.
The abundance of uses for organic compounds in the modern world results in many applications in which these materials are subjected to high pressures. This leads to the desire to be able to describe the behavior of these materials under such conditions. Unfortunately, the number of compounds is much greater than the number of experimental data available for many of the important properties. In the past, one approach that has worked well is the calculation of appropriate properties by summing the contributions from the organic functional groups making up molecules of the compounds in question. A new set of group contributions for the molar volume, volume thermal expansivity, heat capacity, and the Rao function is presented for functional groups containing C, H, and O. This set is, in most cases, limited in application to low molecular liquids. A new technique for the calculation of the pressure derivative of the bulk modulus is also presented. Comparison with data indicates that the presented technique works very well for most low molecular hydrocarbon liquids and somewhat less well for oxygen-bearing compounds. A similar comparison of previous results for polymers indicates that the existing tabulations of group contributions for this class of materials is in need of revision. There is also evidence that the Rao function contributions for polymers and low molecular compounds are somewhat different.
Resumo:
Three separate topics, each stimulated by experiments, are treated theoretically in this dessertation: isotopic effects of ozone, electron transfer at interfaces, and intramolecular directional electron transfer in a supramolecular system.
The strange mass-independent isotope effect for the enrichment of ozone, which has been a puzzle in the literature for some 20 years, and the equally puzzling unconventional strong mass-dependent effect of individual reaction rate constants are studied as different aspects of a symmetry-driven behavior. A statistical (RRKM-based) theory with a hindered-rotor transition state is used. The individual rate constant ratios of recombination reactions at low pressures are calculated using the theory involving (1) small deviation from the statistical density of states for symmetric isotopomers, and (2) weak collisions for deactivation of the vibrationally excited ozone molecules. The weak collision and partitioning among exit channels play major roles in producing the large unconventional isotope effect in "unscrambled" systems. The enrichment studies reflect instead the non-statistical effect in "scrambled" systems. The theoretical results of low-pressure ozone enrichments and individual rate constant ratios obtained from these calculations are consistent with the corresponding experimental results. The isotopic exchange rate constant for the reaction ^(16)O + ^(18)O ^(18)O→+ ^(16)O ^(18)O + ^(18)O provides information on the nature of a variationally determined hindered-rotor transition state using experimental data at 130 K and 300 K. Pressure effects on the recombination rate constant, on the individual rate constant ratios and on the enrichments are also investigated. The theoretical results are consistent with the experimental data. The temperature dependence of the enrichment and rate constant ratios is also discussed, and experimental tests are suggested. The desirability of a more accurate potential energy surface for ozone in the transition state region is also noted.
Electron transfer reactions at semiconductor /liquid interfaces are studied using a tight-binding model for the semiconductors. The slab method and a z-transform method are employed in obtaining the tight-binding electronic structures of semiconductors having surfaces. The maximum electron transfer rate constants at Si/viologen^(2-/+) and InP /Me_(2)Fc^(+/O) interfaces are computed using the tight-binding type calculations for the solid and the extended-Huckel for the coupling to the redox agent at the interface. These electron transfer reactions are also studied using a free electron model for the semiconductor and the redox molecule, where Bardeen's method is adapted to calculate the coupling matrix element between the molecular and semiconductor electronic states. The calculated results for maximum rate constant of the electron transfer from the semiconductor bulk states are compared with the experimentally measured values of Lewis and coworkers, and are in reasonable agreement, without adjusting parameters. In the case of InP /liquid interface, the unusual current vs applied potential behavior is additionally interpreted, in part, by the presence of surface states.
Photoinduced electron transfer reactions in small supramolecular systems, such as 4-aminonaphthalimide compounds, are interesting in that there are, in principle, two alternative pathways (directions) for the electron transfer. The electron transfer, however, is unidirectional, as deduced from pH-dependent fluorescence quenching studies on different compounds. The role of electronic coupling matrix element and the charges in protonation are considered to explain the directionality of the electron transfer and other various results. A related mechanism is proposed to interpret the fluorescence behavior of similar molecules as fluorescent sensors of metal ions.
Resumo:
The Earth is very heterogeneous, especially in the region close to the surface of the Earth, and in regions close to the core-mantle boundary (CMB). The lowermost mantle (bottom 300km of the mantle) is the place for fast anomaly (3% faster S velocity than PREM, modeled from Scd), for slow anomaly (-3% slower S velocity than PREM, modeled from S,ScS), for extreme anomalous structure (ultra-low velocity zone, 30% lower inS velocity, 10% lower in P velocity). Strong anomaly with larger dimension is also observed beneath Africa and Pacific, originally modeled from travel time of S, SKS and ScS. Given the heterogeneous nature of the earth, more accurate approach (than travel time) has to be applied to study the details of various anomalous structures, and matching waveform with synthetic seismograms has proven effective in constraining the velocity structures. However, it is difficult to make synthetic seismograms in more than 1D cases where no exact analytical solution is possible. Numerical methods like finite difference or finite elements are too time consuming in modeling body waveforms. We developed a 2D synthetic algorithm, which is extended from 1D generalized ray theory (GRT), to make synthetic seismograms efficiently (each seismogram per minutes). This 2D algorithm is related to WKB approximation, but is based on different principles, it is thus named to be WKM, i.e., WKB modified. WKM has been applied to study the variation of fast D" structure beneath the Caribbean sea, to study the plume beneath Africa. WKM is also applied to study PKP precursors which is a very important seismic phase in modeling lower mantle heterogeneity. By matching WKM synthetic seismograms with various data, we discovered and confirmed that (a) The D" beneath Caribbean varies laterally, and the variation is best revealed with Scd+Sab beyond 88 degree where Sed overruns Sab. (b) The low velocity structure beneath Africa is about 1500 km in height, at least 1000km in width, and features 3% reduced S velocity. The low velocity structure is a combination of a relatively thin, low velocity layer (200 km thick or less) beneath the Atlantic, then rising very sharply into mid mantle towards Africa. (c) At the edges of this huge Africa low velocity structures, ULVZs are found by modeling the large separation between S and ScS beyond 100 degree. The ULVZ to the eastern boundary was discovered with SKPdS data, and later is confirmed by PKP precursor data. This is the first time that ULVZ is verified with distinct seismic phase.
Resumo:
The combustion of CS₂ and O₂ in a free burning laminar mixing layer at low pressure was investigated using emission spectroscopy. The temperature fields, CO vibrational distributions, and CO concentrations were measured. The data indicate that vibration ally excited CO was produced in the mixing layer flames, but that there were no vibrational population inversions. In comparison with the CS₂/O₂ premixed flames, the mixing layer flames favored greater production of COS and CO₂. Computer modeling was used to study the mechanisms responsible for the production of COS and CO₂, and to study how the branching chain mechanism responsible for production of CO affects the behavior of the mixing layer flame. The influences of the gas additives, N₂O, COS, and CNBr, were also investigated.
Resumo:
Bulk n-lnSb is investigated at a heterodyne detector for the submillimeter wavelength region. Two modes or operation are investigated: (1) the Rollin or hot electron bolometer mode (zero magnetic field), and (2) the Putley mode (quantizing magnetic field). The highlight of the thesis work is the pioneering demonstration or the Putley mode mixer at several frequencies. For example, a double-sideband system noise temperature of about 510K was obtained using a 812 GHz methanol laser for the local oscillator. This performance is at least a factor or 10 more sensitive than any other performance reported to date at the same frequency. In addition, the Putley mode mixer achieved system noise temperatures of 250K at 492 GHz and 350K at 625 GHz. The 492 GHz performance is about 50% better and the 625 GHz is about 100% better than previous best performances established by the Rollin-mode mixer. To achieve these results, it was necessary to design a totally new ultra-low noise, room-temperature preamp to handle the higher source impedance imposed by the Putley mode operation. This preamp has considerably less input capacitance than comparably noisy, ambient designs.
In addition to advancing receiver technology, this thesis also presents several novel results regarding the physics of n-lnSb at low temperatures. A Fourier transform spectrometer was constructed and used to measure the submillimeter wave absorption coefficient of relatively pure material at liquid helium temperatures and in zero magnetic field. Below 4.2K, the absorption coefficient was found to decrease with frequency much faster than predicted by Drudian theory. Much better agreement with experiment was obtained using a quantum theory based on inverse-Bremmstrahlung in a solid. Also the noise of the Rollin-mode detector at 4.2K was accurately measured and compared with theory. The power spectrum is found to be well fit by a recent theory of non- equilibrium noise due to Mather. Surprisingly, when biased for optimum detector performance, high purity lnSb cooled to liquid helium temperatures generates less noise than that predicted by simple non-equilibrium Johnson noise theory alone. This explains in part the excellent performance of the Rollin-mode detector in the millimeter wavelength region.
Again using the Fourier transform spectrometer, spectra are obtained of the responsivity and direct detection NEP as a function of magnetic field in the range 20-110 cm-1. The results show a discernable peak in the detector response at the conduction electron cyclotron resonance frequency tor magnetic fields as low as 3 KG at bath temperatures of 2.0K. The spectra also display the well-known peak due to the cyclotron resonance of electrons bound to impurity states. The magnitude of responsivity at both peaks is roughly constant with magnet1c field and is comparable to the low frequency Rollin-mode response. The NEP at the peaks is found to be much better than previous values at the same frequency and comparable to the best long wavelength results previously reported. For example, a value NEP=4.5x10-13/Hz1/2 is measured at 4.2K, 6 KG and 40 cm-1. Study of the responsivity under conditions of impact ionization showed a dramatic disappearance of the impurity electron resonance while the conduction electron resonance remained constant. This observation offers the first concrete evidence that the mobility of an electron in the N=0 and N=1 Landau levels is different. Finally, these direct detection experiments indicate that the excellent heterodyne performance achieved at 812 GHz should be attainable up to frequencies of at least 1200 GHz.
Resumo:
Semiconductor technology scaling has enabled drastic growth in the computational capacity of integrated circuits (ICs). This constant growth drives an increasing demand for high bandwidth communication between ICs. Electrical channel bandwidth has not been able to keep up with this demand, making I/O link design more challenging. Interconnects which employ optical channels have negligible frequency dependent loss and provide a potential solution to this I/O bandwidth problem. Apart from the type of channel, efficient high-speed communication also relies on generation and distribution of multi-phase, high-speed, and high-quality clock signals. In the multi-gigahertz frequency range, conventional clocking techniques have encountered several design challenges in terms of power consumption, skew and jitter. Injection-locking is a promising technique to address these design challenges for gigahertz clocking. However, its small locking range has been a major contributor in preventing its ubiquitous acceptance.
In the first part of this dissertation we describe a wideband injection locking scheme in an LC oscillator. Phase locked loop (PLL) and injection locking elements are combined symbiotically to achieve wide locking range while retaining the simplicity of the latter. This method does not require a phase frequency detector or a loop filter to achieve phase lock. A mathematical analysis of the system is presented and the expression for new locking range is derived. A locking range of 13.4 GHz–17.2 GHz (25%) and an average jitter tracking bandwidth of up to 400 MHz are measured in a high-Q LC oscillator. This architecture is used to generate quadrature phases from a single clock without any frequency division. It also provides high frequency jitter filtering while retaining the low frequency correlated jitter essential for forwarded clock receivers.
To improve the locking range of an injection locked ring oscillator; QLL (Quadrature locked loop) is introduced. The inherent dynamics of injection locked quadrature ring oscillator are used to improve its locking range from 5% (7-7.4GHz) to 90% (4-11GHz). The QLL is used to generate accurate clock phases for a four channel optical receiver using a forwarded clock at quarter-rate. The QLL drives an injection locked oscillator (ILO) at each channel without any repeaters for local quadrature clock generation. Each local ILO has deskew capability for phase alignment. The optical-receiver uses the inherent frequency to voltage conversion provided by the QLL to dynamically body bias its devices. A wide locking range of the QLL helps to achieve a reliable data-rate of 16-32Gb/s and adaptive body biasing aids in maintaining an ultra-low power consumption of 153pJ/bit.
From the optical receiver we move on to discussing a non-linear equalization technique for a vertical-cavity surface-emitting laser (VCSEL) based optical transmitter, to enable low-power, high-speed optical transmission. A non-linear time domain optical model of the VCSEL is built and evaluated for accuracy. The modelling shows that, while conventional FIR-based pre-emphasis works well for LTI electrical channels, it is not optimum for the non-linear optical frequency response of the VCSEL. Based on the simulations of the model an optimum equalization methodology is derived. The equalization technique is used to achieve a data-rate of 20Gb/s with power efficiency of 0.77pJ/bit.
Resumo:
(1) Equation of State of Komatiite
The equation of state (EOS) of a molten komatiite (27 wt% MgO) was detennined in the 5 to 36 GPa pressure range via shock wave compression from 1550°C and 0 bar. Shock wave velocity, US, and particle velocity, UP, in km/s follow the linear relationship US = 3.13(±0.03) + 1.47(±0.03) UP. Based on a calculated density at 1550°C, 0 bar of 2.745±0.005 glee, this US-UP relationship gives the isentropic bulk modulus KS = 27.0 ± 0.6 GPa, and its first and second isentropic pressure derivatives, K'S = 4.9 ± 0.1 and K"S = -0.109 ± 0.003 GPa-1.
The calculated liquidus compression curve agrees within error with the static compression results of Agee and Walker [1988a] to 6 GPa. We detennine that olivine (FO94) will be neutrally buoyant in komatiitic melt of the composition we studied near 8.2 GPa. Clinopyroxene would also be neutrally buoyant near this pressure. Liquidus garnet-majorite may be less dense than this komatiitic liquid in the 20-24 GPa interval, however pyropic-garnet and perovskite phases are denser than this komatiitic liquid in their respective liquidus pressure intervals to 36 GPa. Liquidus perovskite may be neutrally buoyant near 70 GPa.
At 40 GPa, the density of shock-compressed molten komatiite would be approximately equal to the calculated density of an equivalent mixture of dense solid oxide components. This observation supports the model of Rigden et al. [1989] for compressibilities of liquid oxide components. Using their theoretical EOS for liquid forsterite and fayalite, we calculate the densities of a spectrum of melts from basaltic through peridotitic that are related to the experimentally studied komatiitic liquid by addition or subtraction of olivine. At low pressure, olivine fractionation lowers the density of basic magmas, but above 14 GPa this trend is reversed. All of these basic to ultrabasic liquids are predicted to have similar densities at 14 GPa, and this density is approximately equal to the bulk (PREM) mantle. This suggests that melts derived from a peridotitic mantle may be inhibited from ascending from depths greater than 400 km.
The EOS of ultrabasic magmas was used to model adiabatic melting in a peridotitic mantle. If komatiites are formed by >15% partial melting of a peridotitic mantle, then komatiites generated by adiabatic melting come from source regions in the lower transition zone (≈500-670 km) or the lower mantle (>670 km). The great depth of incipient melting implied by this model, and the melt density constraint mentioned above, suggest that komatiitic volcanism may be gravitationally hindered. Although komatiitic magmas are thought to separate from their coexisting crystals at a temperature =200°C greater than that for modern MORBs, their ultimate sources are predicted to be diapirs that, if adiabatically decompressed from initially solid mantle, were more than 700°C hotter than the sources of MORBs and derived from great depth.
We considered the evolution of an initially molten mantle, i.e., a magma ocean. Our model considers the thermal structure of the magma ocean, density constraints on crystal segregation, and approximate phase relationships for a nominally chondritic mantle. Crystallization will begin at the core-mantle boundary. Perovskite buoyancy at > 70 GPa may lead to a compositionally stratified lower mantle with iron-enriched mangesiowiistite content increasing with depth. The upper mantle may be depleted in perovskite components. Olivine neutral buoyancy may lead to the formation of a dunite septum in the upper mantle, partitioning the ocean into upper and lower reservoirs, but this septum must be permeable.
(2) Viscosity Measurement with Shock Waves
We have examined in detail the analytical method for measuring shear viscosity from the decay of perturbations on a corrugated shock front The relevance of initial conditions, finite shock amplitude, bulk viscosity, and the sensitivity of the measurements to the shock boundary conditions are discussed. The validity of the viscous perturbation approach is examined by numerically solving the second-order Navier-Stokes equations. These numerical experiments indicate that shock instabilities may occur even when the Kontorovich-D'yakov stability criteria are satisfied. The experimental results for water at 15 GPa are discussed, and it is suggested that the large effective viscosity determined by this method may reflect the existence of ice VII on the Rayleigh path of the Hugoniot This interpretation reconciles the experimental results with estimates and measurements obtained by other means, and is consistent with the relationship of the Hugoniot with the phase diagram for water. Sound waves are generated at 4.8 MHz at in the water experiments at 15 GPa. The existence of anelastic absorption modes near this frequency would also lead to large effective viscosity estimates.
(3) Equation of State of Molybdenum at 1400°C
Shock compression data to 96 GPa for pure molybdenum, initially heated to 1400°C, are presented. Finite strain analysis of the data gives a bulk modulus at 1400°C, K'S. of 244±2 GPa and its pressure derivative, K'OS of 4. A fit of shock velocity to particle velocity gives the coefficients of US = CO+S UP to be CO = 4.77±0.06 km/s and S = 1.43±0.05. From the zero pressure sound speed, CO, a bulk modulus of 232±6 GPa is calculated that is consistent with extrapolation of ultrasonic elasticity measurements. The temperature derivative of the bulk modulus at zero pressure, θKOSθT|P, is approximately -0.012 GPa/K. A thermodynamic model is used to show that the thermodynamic Grüneisen parameter is proportional to the density and independent of temperature. The Mie-Grüneisen equation of state adequately describes the high temperature behavior of molybdenum under the present range of shock loading conditions.
Resumo:
This thesis describes investigations of two classes of laboratory plasmas with rather different properties: partially ionized low pressure radiofrequency (RF) discharges, and fully ionized high density magnetohydrodynamically (MHD)-driven jets. An RF pre-ionization system was developed to enable neutral gas breakdown at lower pressures and create hotter, faster jets in the Caltech MHD-Driven Jet Experiment. The RF plasma source used a custom pulsed 3 kW 13.56 MHz RF power amplifier that was powered by AA batteries, allowing it to safely float at 4-6 kV with the cathode of the jet experiment. The argon RF discharge equilibrium and transport properties were analyzed, and novel jet dynamics were observed.
Although the RF plasma source was conceived as a wave-heated helicon source, scaling measurements and numerical modeling showed that inductive coupling was the dominant energy input mechanism. A one-dimensional time-dependent fluid model was developed to quantitatively explain the expansion of the pre-ionized plasma into the jet experiment chamber. The plasma transitioned from an ionizing phase with depressed neutral emission to a recombining phase with enhanced emission during the course of the experiment, causing fast camera images to be a poor indicator of the density distribution. Under certain conditions, the total visible and infrared brightness and the downstream ion density both increased after the RF power was turned off. The time-dependent emission patterns were used for an indirect measurement of the neutral gas pressure.
The low-mass jets formed with the aid of the pre-ionization system were extremely narrow and collimated near the electrodes, with peak density exceeding that of jets created without pre-ionization. The initial neutral gas distribution prior to plasma breakdown was found to be critical in determining the ultimate jet structure. The visible radius of the dense central jet column was several times narrower than the axial current channel radius, suggesting that the outer portion of the jet must have been force free, with the current parallel to the magnetic field. The studies of non-equilibrium flows and plasma self-organization being carried out at Caltech are relevant to astrophysical jets and fusion energy research.
Resumo:
The disolvated proton, H(OH2)2+ is employed as a chemical reagent in low pressure (˂ 10-5 torr) investigations by ion cyclotron resonance spectroscopy. Since termolecular reactions are absent at low pressure, disolvated protons are not generally observed. However H(OH2)2+ is produced in a sequence of bimolecular reactions in mixtures containing H2O and one of a small number of organohalide precursors. Then a series of hydrated Lewis bases is produced by H3O+ transfer from H(OH2)2+. In Chapter II, the relative stability of hydrated bases containing heteroatoms of both first and second row elements is determined from the preferred direction of H3O+ transfer between BH(OH2)+ complexes. S and P containing bases are shown to bind H3O+ more weakly than O and N bases with comparable proton affinities. A simple model of hydrogen bonding is proposed to account for these observations.
H+ transfer from H(OH2)2+ to several Lewis bases also occurs at low pressure. In Chapter III the relative importance of H3O+ transfer and H+ transfer from H(OH2)2+ to a series of bases is observed to be a function of base strength. Beginning with CH3COOH, the weakest base for which H+ transfer is observed, the importance of H+ transfer increases with increasing proton affinity of the acceptor base. The nature of neutral products formed from H(OH2)2+ by loss of H+ is also considered.
Chapters IV and V deal with thermochemistry of small fluorocarbons determined by photoionization mass spectrometry. The enthalpy of formation of CF2 is considered in Chapter IV. Photoionization of perfluoropropylene, perfluorocyclopropane, and trifluoromethyl benzene yield onsets for ions formed by loss of a CF2 neutral fragment. Earlier determinations of ΔH°f298 (CF2) are reinterpreted using updated thermochemical values and compared with results of this study. The heat of formation of neutral perfluorocyclopropane is also derived. Finally, the energetics of interconversion of perfluoropropylene and perfluorocyclopropane are considered for both the neutrals and their molecular ions.
In Chapter V the heats of formation of CF3+ and CF3I+are derived from photoionization of CF3I. These are considered with respect to ion-molecule reactions observed in CF3I monitored by the techniques of ion cyclotron resonance spectroscopy. Results obtained in previous experiments are also compared.
Resumo:
Thermodynamical fluctuations in temperature and position exist in every physical system, and show up as a fundamental noise limit whenever we choose to measure some quantity in a laboratory environment. Thermodynamical fluctuations in the position of the atoms in the dielectric coatings on the mirrors for optical cavities at the forefront of precision metrology (e.g., LIGO, the cavities which probe atomic transitions to define the second) are a current limiting noise source for these experiments, and anything which involves locking a laser to an optical cavity. These thermodynamic noise sources scale physical geometry of experiment, material properties (such as mechanical loss in our dielectric coatings), and temperature. The temperature scaling provides a natural motivation to move to lower temperatures, with a potential huge benefit for redesigning a room temperature experiment which is limited by thermal noise for cryogenic operation.
We design, build, and characterize a pair of linear Fabry-Perot cavities to explore limitations to ultra low noise laser stabilization experiments at cryogenic temperatures. We use silicon as the primary material for the cavity and mirrors, due to a zero crossing in its linear coefficient of thermal expansion (CTE) at 123 K, and other desirable material properties. We use silica tantala coatings, which are currently the best for making high finesse low noise cavities at room temperature. The material properties of these coating materials (which set the thermal noise levels) are relatively unknown at cryogenic temperatures, which motivates us to study them at these temperatures. We were not able to measure any thermal noise source with our experiment due to excess noise. In this work we analyze the design and performance of the cavities, and recommend a design shift from mid length cavities to short cavities in order to facilitate a direct measurement of cryogenic coating noise.
In addition, we measure the cavities (frequency dependent) photo-thermal response. This can help characterize thermooptic noise in the coatings, which is poorly understood at cryogenic temperatures. We also explore the feasibility of using the cavity to do macroscopic quantum optomechanics such as ground state cooling.
Resumo:
In order to determine the properties of the bicycloheptatrienyl anion (Ia) (predicted to be conjugatively stabilized by Hückel Molecular Orbital Theory) the neutral precursor, bicyclo[3. 2. 0] hepta-1, 4, 6-triene (I) was prepared by the following route.
Reaction of I with potassium-t-butoxide, potassium, or lithium dicyclohexylamide gave anion Ia in very low yield. Reprotonation of I was found to occur solely at the 1 or 5 position to give triene II, isolated as to its dimers.
A study of the acidity of I and of other conjugated hydrocarbons by means of ion cyclotron resonance spectroscopy resulted in determination of the following order of relative acidities:
H2S ˃ C5H6 ˃ CH3NO2 ˃ 1, 4- C5H8 ˃ I ˃ C2H5OH ˃ H2O; cyclo-C7H8 ˃ C2 H5OH; фCH3 ˃ CH3OH
In addition, limits for the proton affinities of the conjugate bases were determined:
350 kcal/mole ˂ PA(C5 H5-) ˂ 360 kcal/mole
362 kcal/mole ˂ PA(C5H7-, Ia, cyclo-C7H7-) ˂ 377 kcal/mole PA(фCH2-) ˂ 385 kcal/mole
Gas phase kinetics of the trans-XVIII to I transformation gave the following activation parameters: Ea = 43.0 kcal/mole, log A = 15.53 and ∆Sǂ (220°) = 9.6 cu. The results were interpreted as indicating initial 1,2 bond cleavage to give the 1,3-diradical which closed to I. Similar studies on cis-XVIII gave results consistent with a surface component to the reaction (Ea = 22.7 kcal/mole; log A = 9.23, ∆Sǂ (119°) = -18.9 eu).
The low pressure (0.01 to 1 torr) pyrolysis of trans-XVIII gave in addition to I, fulvenallene (LV), ethynylcyclopentadiene (LVI) and heptafulvalene (LVII). The relative ratios of the C7H6 isomers were found to be dependent upon temperature and pressure, higher relative pressure and lower temperatures favoring formation of I. The results were found to be consistent with the intermediacy of vibrationally excited I and subsequent reaction to give LV and LVI.