851 resultados para Tematización de un esquema


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Resumen basado en el de la publicación.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Resumen basado en el de la publicaci??n

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Resumen basado en el de la publicaci??n

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Resumen basado en el de la publicaci??n

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Resumen basado en el de la publicaci??n

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Monogr??fico con el t??tulo: "Interculturalidad y atenci??n educativa a la poblaci??n inmigrada. Tendencias, modelos y experiencias"

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Resumen basado en el de la publicaci??n

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Monogr??fico con el t??tulo: 'Descentralizaci??n con transparencia, liderazgo, calidad y pertinencia '

Relevância:

80.00% 80.00%

Publicador:

Resumo:

La comunicación presenta las principales conclusiones que se están extrayendo del proceso de puesta en marcha de los nuevos Grados de Pedagogia y Educacion Social en la Facultad de Filosofía y Ciencias de la Educación de la Universidad del País Vasco. Se explican el diseño de las nuevas titulaciones basado en un Esquema Modular, los pasos dados en la Coordinación Docente y se subrayan experiencias como la Actividad Interdisciplinar de Módulo, en un contexto de cambio de la gestión organizacional. Se recogen también las experiencias del Módulo 1 y el Módulo 2 durante el curso 2010-11, y los resultados de las evaluaciones realizadas por los equipos docentes y los alumnos

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The high level of realism and interaction in many computer graphic applications requires techniques for processing complex geometric models. First, we present a method that provides an accurate low-resolution approximation from a multi-chart textured model that guarantees geometric fidelity and correct preservation of the appearance attributes. Then, we introduce a mesh structure called Compact Model that approximates dense triangular meshes while preserving sharp features, allowing adaptive reconstructions and supporting textured models. Next, we design a new space deformation technique called *Cages based on a multi-level system of cages that preserves the smoothness of the mesh between neighbouring cages and is extremely versatile, allowing the use of heterogeneous sets of coordinates and different levels of deformation. Finally, we propose a hybrid method that allows to apply any deformation technique on large models obtaining high quality results with a reduced memory footprint and a high performance.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Aquesta tesi proposa l'ús d'un seguit de tècniques pel control a alt nivell d'un robot autònom i també per l'aprenentatge automàtic de comportaments. L'objectiu principal de la tesis fou el de dotar d'intel·ligència als robots autònoms que han d'acomplir unes missions determinades en entorns desconeguts i no estructurats. Una de les premisses tingudes en compte en tots els passos d'aquesta tesis va ser la selecció d'aquelles tècniques que poguessin ésser aplicades en temps real, i demostrar-ne el seu funcionament amb experiments reals. El camp d'aplicació de tots els experiments es la robòtica submarina. En una primera part, la tesis es centra en el disseny d'una arquitectura de control que ha de permetre l'assoliment d'una missió prèviament definida. En particular, la tesis proposa l'ús de les arquitectures de control basades en comportaments per a l'assoliment de cada una de les tasques que composen la totalitat de la missió. Una arquitectura d'aquest tipus està formada per un conjunt independent de comportaments, els quals representen diferents intencions del robot (ex.: "anar a una posició", "evitar obstacles",...). Es presenta una recerca bibliogràfica sobre aquest camp i alhora es mostren els resultats d'aplicar quatre de les arquitectures basades en comportaments més representatives a una tasca concreta. De l'anàlisi dels resultats se'n deriva que un dels factors que més influeixen en el rendiment d'aquestes arquitectures, és la metodologia emprada per coordinar les respostes dels comportaments. Per una banda, la coordinació competitiva és aquella en que només un dels comportaments controla el robot. Per altra banda, en la coordinació cooperativa el control del robot és realitza a partir d'una fusió de totes les respostes dels comportaments actius. La tesis, proposa un esquema híbrid d'arquitectura capaç de beneficiar-se dels principals avantatges d'ambdues metodologies. En una segona part, la tesis proposa la utilització de l'aprenentatge per reforç per aprendre l'estructura interna dels comportaments. Aquest tipus d'aprenentatge és adequat per entorns desconeguts i el procés d'aprenentatge es realitza al mateix temps que el robot està explorant l'entorn. La tesis presenta també un estat de l'art d'aquest camp, en el que es detallen els principals problemes que apareixen en utilitzar els algoritmes d'aprenentatge per reforç en aplicacions reals, com la robòtica. El problema de la generalització és un dels que més influeix i consisteix en permetre l'ús de variables continues sense augmentar substancialment el temps de convergència. Després de descriure breument les principals metodologies per generalitzar, la tesis proposa l'ús d'una xarxa neural combinada amb l'algoritme d'aprenentatge per reforç Q_learning. Aquesta combinació proporciona una gran capacitat de generalització i una molt bona disposició per aprendre en tasques de robòtica amb exigències de temps real. No obstant, les xarxes neurals són aproximadors de funcions no-locals, el que significa que en treballar amb un conjunt de dades no homogeni es produeix una interferència: aprendre en un subconjunt de l'espai significa desaprendre en la resta de l'espai. El problema de la interferència afecta de manera directa en robòtica, ja que l'exploració de l'espai es realitza sempre localment. L'algoritme proposat en la tesi té en compte aquest problema i manté una base de dades representativa de totes les zones explorades. Així doncs, totes les mostres de la base de dades s'utilitzen per actualitzar la xarxa neural, i per tant, l'aprenentatge és homogeni. Finalment, la tesi presenta els resultats obtinguts amb la arquitectura de control basada en comportaments i l'algoritme d'aprenentatge per reforç. Els experiments es realitzen amb el robot URIS, desenvolupat a la Universitat de Girona, i el comportament après és el seguiment d'un objecte mitjançant visió per computador. La tesi detalla tots els dispositius desenvolupats pels experiments així com les característiques del propi robot submarí. Els resultats obtinguts demostren la idoneïtat de les propostes en permetre l'aprenentatge del comportament en temps real. En un segon apartat de resultats es demostra la capacitat de generalització de l'algoritme d'aprenentatge mitjançant el "benchmark" del "cotxe i la muntanya". Els resultats obtinguts en aquest problema milloren els resultats d'altres metodologies, demostrant la millor capacitat de generalització de les xarxes neurals.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Aquesta tesi està emmarcada dins la detecció precoç de masses, un dels símptomes més clars del càncer de mama, en imatges mamogràfiques. Primerament, s'ha fet un anàlisi extensiu dels diferents mètodes de la literatura, concloent que aquests mètodes són dependents de diferent paràmetres: el tamany i la forma de la massa i la densitat de la mama. Així, l'objectiu de la tesi és analitzar, dissenyar i implementar un mètode de detecció robust i independent d'aquests tres paràmetres. Per a tal fi, s'ha construït un patró deformable de la massa a partir de l'anàlisi de masses reals i, a continuació, aquest model és buscat en les imatges seguint un esquema probabilístic, obtenint una sèrie de regions sospitoses. Fent servir l'anàlisi 2DPCA, s'ha construït un algorisme capaç de discernir aquestes regions són realment una massa o no. La densitat de la mama és un paràmetre que s'introdueix de forma natural dins l'algorisme.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

La calidad de energía eléctrica incluye la calidad del suministro y la calidad de la atención al cliente. La calidad del suministro a su vez se considera que la conforman dos partes, la forma de onda y la continuidad. En esta tesis se aborda la continuidad del suministro a través de la localización de faltas. Este problema se encuentra relativamente resuelto en los sistemas de transmisión, donde por las características homogéneas de la línea, la medición en ambos terminales y la disponibilidad de diversos equipos, se puede localizar el sitio de falta con una precisión relativamente alta. En sistemas de distribución, sin embargo, la localización de faltas es un problema complejo y aún no resuelto. La complejidad es debida principalmente a la presencia de conductores no homogéneos, cargas intermedias, derivaciones laterales y desbalances en el sistema y la carga. Además, normalmente, en estos sistemas sólo se cuenta con medidas en la subestación, y un modelo simplificado del circuito. Los principales esfuerzos en la localización han estado orientados al desarrollo de métodos que utilicen el fundamental de la tensión y de la corriente en la subestación, para estimar la reactancia hasta la falta. Como la obtención de la reactancia permite cuantificar la distancia al sitio de falta a partir del uso del modelo, el Método se considera Basado en el Modelo (MBM). Sin embargo, algunas de sus desventajas están asociadas a la necesidad de un buen modelo del sistema y a la posibilidad de localizar varios sitios donde puede haber ocurrido la falta, esto es, se puede presentar múltiple estimación del sitio de falta. Como aporte, en esta tesis se presenta un análisis y prueba comparativa entre varios de los MBM frecuentemente referenciados. Adicionalmente se complementa la solución con métodos que utilizan otro tipo de información, como la obtenida de las bases históricas de faltas con registros de tensión y corriente medidos en la subestación (no se limita solamente al fundamental). Como herramienta de extracción de información de estos registros, se utilizan y prueban dos técnicas de clasificación (LAMDA y SVM). Éstas relacionan las características obtenidas de la señal, con la zona bajo falta y se denominan en este documento como Métodos de Clasificación Basados en el Conocimiento (MCBC). La información que usan los MCBC se obtiene de los registros de tensión y de corriente medidos en la subestación de distribución, antes, durante y después de la falta. Los registros se procesan para obtener los siguientes descriptores: a) la magnitud de la variación de tensión ( dV ), b) la variación de la magnitud de corriente ( dI ), c) la variación de la potencia ( dS ), d) la reactancia de falta ( Xf ), e) la frecuencia del transitorio ( f ), y f) el valor propio máximo de la matriz de correlación de corrientes (Sv), cada uno de los cuales ha sido seleccionado por facilitar la localización de la falta. A partir de estos descriptores, se proponen diferentes conjuntos de entrenamiento y validación de los MCBC, y mediante una metodología que muestra la posibilidad de hallar relaciones entre estos conjuntos y las zonas en las cuales se presenta la falta, se seleccionan los de mejor comportamiento. Los resultados de aplicación, demuestran que con la combinación de los MCBC con los MBM, se puede reducir el problema de la múltiple estimación del sitio de falta. El MCBC determina la zona de falta, mientras que el MBM encuentra la distancia desde el punto de medida hasta la falta, la integración en un esquema híbrido toma las mejores características de cada método. En este documento, lo que se conoce como híbrido es la combinación de los MBM y los MCBC, de una forma complementaria. Finalmente y para comprobar los aportes de esta tesis, se propone y prueba un esquema de integración híbrida para localización de faltas en dos sistemas de distribución diferentes. Tanto los métodos que usan los parámetros del sistema y se fundamentan en la estimación de la impedancia (MBM), como aquellos que usan como información los descriptores y se fundamentan en técnicas de clasificación (MCBC), muestran su validez para resolver el problema de localización de faltas. Ambas metodologías propuestas tienen ventajas y desventajas, pero según la teoría de integración de métodos presentada, se alcanza una alta complementariedad, que permite la formulación de híbridos que mejoran los resultados, reduciendo o evitando el problema de la múltiple estimación de la falta.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Muchas de las nuevas aplicaciones emergentes de Internet tales como TV sobre Internet, Radio sobre Internet,Video Streamming multi-punto, entre otras, necesitan los siguientes requerimientos de recursos: ancho de banda consumido, retardo extremo-a-extremo, tasa de paquetes perdidos, etc. Por lo anterior, es necesario formular una propuesta que especifique y provea para este tipo de aplicaciones los recursos necesarios para su buen funcionamiento. En esta tesis, proponemos un esquema de ingeniería de tráfico multi-objetivo a través del uso de diferentes árboles de distribución para muchos flujos multicast. En este caso, estamos usando la aproximación de múltiples caminos para cada nodo egreso y de esta forma obtener la aproximación de múltiples árboles y a través de esta forma crear diferentes árboles multicast. Sin embargo, nuestra propuesta resuelve la fracción de la división del tráfico a través de múltiples árboles. La propuesta puede ser aplicada en redes MPLS estableciendo rutas explícitas en eventos multicast. En primera instancia, el objetivo es combinar los siguientes objetivos ponderados dentro de una métrica agregada: máxima utilización de los enlaces, cantidad de saltos, el ancho de banda total consumido y el retardo total extremo-a-extremo. Nosotros hemos formulado esta función multi-objetivo (modelo MHDB-S) y los resultados obtenidos muestran que varios objetivos ponderados son reducidos y la máxima utilización de los enlaces es minimizada. El problema es NP-duro, por lo tanto, un algoritmo es propuesto para optimizar los diferentes objetivos. El comportamiento que obtuvimos usando este algoritmo es similar al que obtuvimos con el modelo. Normalmente, durante la transmisión multicast los nodos egresos pueden salir o entrar del árbol y por esta razón en esta tesis proponemos un esquema de ingeniería de tráfico multi-objetivo usando diferentes árboles para grupos multicast dinámicos. (en el cual los nodos egresos pueden cambiar durante el tiempo de vida de la conexión). Si un árbol multicast es recomputado desde el principio, esto podría consumir un tiempo considerable de CPU y además todas las comuicaciones que están usando el árbol multicast serán temporalmente interrumpida. Para aliviar estos inconvenientes, proponemos un modelo de optimización (modelo dinámico MHDB-D) que utilice los árboles multicast previamente computados (modelo estático MHDB-S) adicionando nuevos nodos egreso. Usando el método de la suma ponderada para resolver el modelo analítico, no necesariamente es correcto, porque es posible tener un espacio de solución no convexo y por esta razón algunas soluciones pueden no ser encontradas. Adicionalmente, otros tipos de objetivos fueron encontrados en diferentes trabajos de investigación. Por las razones mencionadas anteriormente, un nuevo modelo llamado GMM es propuesto y para dar solución a este problema un nuevo algoritmo usando Algoritmos Evolutivos Multi-Objetivos es propuesto. Este algoritmo esta inspirado por el algoritmo Strength Pareto Evolutionary Algorithm (SPEA). Para dar una solución al caso dinámico con este modelo generalizado, nosotros hemos propuesto un nuevo modelo dinámico y una solución computacional usando Breadth First Search (BFS) probabilístico. Finalmente, para evaluar nuestro esquema de optimización propuesto, ejecutamos diferentes pruebas y simulaciones. Las principales contribuciones de esta tesis son la taxonomía, los modelos de optimización multi-objetivo para los casos estático y dinámico en transmisiones multicast (MHDB-S y MHDB-D), los algoritmos para dar solución computacional a los modelos. Finalmente, los modelos generalizados también para los casos estático y dinámico (GMM y GMM Dinámico) y las propuestas computacionales para dar slución usando MOEA y BFS probabilístico.