970 resultados para Ge-nanowires
Resumo:
High-quality Ge film was epitaxially grown on silicon on insulator using the ultrahigh vacuum chemical vapor deposition. In this paper, we demonstrated that the efficient 1 4 germanium-on-silicon p-i-n photodetector arrays with 1.0 mu m Ge film had a responsivity as high as 0.65 A/W at 1.31 mu m and 0.32 A/W at 1.55 mu m, respectively. The dark current density was about 0.75 mA/cm(2) at 0 V and 13.9 mA/cm(2) at 1.0 V reverse bias. The detectors with a diameter of 25 mu m were measured at 1550 nm incident light under 0 V bias, and the result showed that the 3-dB bandwidth is 2.48 GHz. At a reverse bias of 3 V, the bandwidth is about 13.3 GHz. The four devices showed a good consistency.
Resumo:
A 1.55 mum Ge islands resonant-cavity-enhanced (RCE) detector with high-reflectivity bottom mirror was fabricated by a simple method. The bottom mirror was deposited in the hole formed by anisotropically etching in a basic solution from the back side of the sample with the buried SiO2 layer in silicon-on-insulator substrate as the etch-stop layer. Reflectivity spectrum indicates that the mirror deposited in the hole has a reflectivity as high as 99% in the range of 1.2-1.65 mum. The peak responsivity of the RCE detector at 1543.8 nm is 0.028 mA/W and a full width at half maximum of 5 nm is obtained. Compared with the conventional p-i-n photodetector, the responsivity of RCE detector has a nearly threefold enhancement. (C) 2004 American Institute of Physics.
Resumo:
Novel room temperature photoluminescence (PL) of the Ge/Si islands in multilayer structure grown on silicon-on-insulator substrates is investigated. The cavity formed by the mirrors at the surface and the buried SiO2 interface has a strong effect on the PL emission. The peak position is consistent with the theoretical calculation and independent of the exciting power, which is the evidence of cavity effect on the room temperature photoluminescence. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
A review is presented on recent research development of self-organized Ge/Si quantum dots (QDs). Emphasis is put on the morphological evolution of the Ge quantum dots grown on Si (001) substrate, the structure analysis of multilayer Ge QDs, the optical and electronic properties of these nanostructures, and the approaches to fabricating ordered Ge quantum dots.
Resumo:
Mn+ irons were implanted to n-type Ge(1 1 1) single crystal at room temperature with an energy of 100 keV and a dose of 3 x 10(16) cm(-2). Subsequently annealing was performed at 400degreesC for 1 h under flowing nitrogen gas. X-ray diffraction measurements show that as-implanted sample is amorphous and the structure of crystal is restored after annealing. Polycrystalline germanium is formed in annealed sample. There are no new phases found except germanium. The samples surface morphologies indicate that annealed sample has island-like feature while there is no such kind of characteristic in as-implanted sample. The elemental composition of annealed sample was analyzed by Auger electron spectroscopy. It shows that manganese ions are deeply implanted into germanium substrate and the highest manganese atomic concentration is 8% at the depth of 120 nm. The magnetic properties of samples were investigated by an alternating gradient magnetometer. The annealed sample shows ferromagnetic behavior at room temperature. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Raman scattering and photoluminescence (PL) of boron-doped silicon nanowires have been investigated. Raman spectra showed a band at 480 cm(-1), indicating that the crystallinity of the nanowires was suppressed by boron doping. PL taken from B-doped SiNWS at room temperature exhibited three distinct emission peaks at 1.34, 1.42. and 1.47 eV and the PL intensity was much stronger than that of undoped SiNWS. The increased PL intensity should be very profitable for nano-optoelectronics. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Hexagonal Se nanowires were synthesized using a simple vapor-phase growth with the assistance of the silicon powder as a source material, which turned out to be very important in the growth of the Se nanowires. The morphology, microstructure, and chemical compositions of the nanowires were characterized using various means (XRD, SEM, TEM, XPS, and Raman spectroscopy). The possible growth mechanism of the Se nanowires was explained. The as-grown Se nanowires may find wide applications in biology and optoelectronics.
Resumo:
Self-assembled Si/Ge dot multilayers with small, uncorrelated dots fabricated by molecular beam epitaxy in the Stranski-Krastanov growth mode are studied by Raman scattering of folded longitudinal acoustic (FLA) modes. The FLA Raman spectra are analyzed and modeled with respect to mode frequencies and the spectral envelope of mode intensities. The deduced average superlattice properties are consistent with results from atomic force microscopy. The simple Rytov model used for Si/Ge layer structures reproduces very well the frequencies of the FLA modes up to 150 cm(-1). The nonlinearity of phonon dispersion curves in bulk Si for large momenta, however, becomes important for modeling the higher frequencies of observed FLA modes up to 22nd order. The effective dot layer width and an activation energy for thermal intermixing of 2.1+/-0.2 eV are determined from the spectral envelopes of FLA mode intensities of as-grown and annealed Si/Ge dot multilayers. (C) 2004 American Institute of Physics.
Resumo:
Nitrogen-doped beta-Ga2O3 nanowires (GaO NWs) were prepared by annealing the as-grown nanowires in an ammonia atmosphere. The optical properties of the nitrogen-doped GaO NWs were studied by measurements of the photoluminescence and phosphorescence decay at the temperature range between 10 and 300 K. The experimental results revealed that nitrogen doping in GaO NWs induced a novel intensive red-light emission around 1.67 eV, with a characteristic decay time around 136 mus at 77 K, much shorter than that of the blue emission (a decay time of 457 mus). The time decay and temperature-dependent luminescence spectra were calculated theoretically based on a donor-acceptor pair model, which is in excellent agreement with the experimental data. This result suggests that the observed novel red-light emission originates from the recombination of an electron trapped on a donor due to oxygen vacancies and a hole trapped on an acceptor due to nitrogen doping.
Resumo:
Quasi-aligned Eu2+-doped wurtzite ZnS nanowires on Au-coated Si wafers have been successfully synthesized by a vapor deposition method under a weakly reducing atmosphere. Compared with the undoped counterpart, incorporation of the dopant gives a modulated composition and crystal structure, which leads to a preferred growth of the nanowires along the [0110] direction and a high density of defects in the nanowire hosts. The ion doping causes intense fluorescence and persistent phosphorescence in ZnS nanowires. The dopant Eu2+ ions form an isoelectronic acceptor level and yield a high density of bound excitions, which contribute to the appearance of the radiative recombination emission of the bound excitons and resonant Raman scattering at higher pumping intensity. Co-dopant Cl- ions can serve not only as donors, producing a donor-acceptor pair transition with the Eu2+ acceptor level, but can also form trap levels together with other defects, capture the photoionization electrons of Eu2+, and yield long-lasting (about 4 min), green phosphorescence. With decreasing synthesis time, the existence of more surface states in the nanowires forms a higher density of trap centers and changes the crystal-field strength around Eu2+. As a result, not only have an enhanced Eu2+ -4f(6)5d(1)-4f(7) intra-ion transition and a prolonged afterglow time been more effectively observed (by decreasing the nanowires' diameters), but also the Eu2+ related emissions are shifted to shorter wavelengths.
Resumo:
A two-hot-boat chemical vapor deposition system was modified from a thermal evaporation equipment. This system has the advantage of high vacuum, rapid heating rate and temperature separately controlled boats for the source and samples. These are in favor of synthesizing compound semiconducting nano-materials. By the system, we have synthesized high-quality wurtzite single crystal GaN nanowires and nanotip triangle pyramids via an in-situ doping indium surfactant technique on Si and 3C-SiC epilayer/Si substrates. The products were analyzed by x-ray diffraction, field emission scanning electron microscopy, highresolution transmission electron microscopy, energy- dispersive x-ray spectroscopy, and photoluminescence measurements. The GaN nanotip triangle pyramids, synthesized with this novel method, have potential application in electronic/ photonic devices for field-emission and laser.
Resumo:
We report on a new simple route to realize a high resolution nanograting. By adopting an InAlGaAs matrix and strain-compensated technique, we have proved that a uniform self-assembled InAs nanowire array can be fabricated by molecular beam epitaxy (MBE). A nanograting woven by self-assembled semiconductor nanowires shows a conspicuous diffraction feature. The good agreement between the theoretical and experimental values of diffraction peak positions indicates that a uniform nanowire array is a promising nanograting. This simple one-step MBE growth method will open exciting opportunities for the field of clever optics design.
Resumo:
A complete Raman study of GaP nanowires is presented. By comparison with the Raman spectra of GaP bulk material, microcrystals and nanoparticles, we give evidence that the Raman spectrum is affected by the one-dimensional shape of the nanowires. The Raman spectrum is sensitive to the polarization of the laser light. A specific shape of the overtones located between 600 and 800 cm(-1) is actually a signature of the nanowires. Some phonon confinement and thermal behavior is also observed for nanowires.
Resumo:
We, report on the influence of boron on the formation of Ge quantum dots. The investigated structure consists of a Ge wetting layer, on which a sub-monolayer boron is deposited and subsequently a Ge top layer. For sufficiently thin Ge top layers, the strain field induced by boron on Ge wetting layer destabilizes the Ge top layer and causes the formation of small Ge quantum dots. However, for thicker Ge top layers, boron on the Ge wetting layer diffuses into Ge layers, compensates partly the strain and delays the evolution of Ge quantum dots. By this method, small Ge quantum dots with high density as well as size uniformity can be formed by optimizing the growth condition. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
In this paper, we investigated the Raman scattering and photoluminescence of Zn1-xMnxO nanowires synthesized by the vapor phase growth. The changes of E-2(High) and A(1(LO)) phonon frequency in Raman spectra indicate that the tensile stress increases while the free carrier concentration decreases with the increase of manganese. The Raman spectra exited by the different lasers exhibit the quantum confinement effect of Zn1-xMnxO nanowires. The photoluminescence spectra reveal that the near band emission is affected by the content of manganese obviously. The values Of I-UV/G decrease distinctly with the manganese increase also demonstrate that more stress introduced with the more substitution of Mn for Zn.