119 resultados para RTA
Resumo:
Raman scattering, photoluminescence (PL), and nuclear reaction analysis (MA) have been employed to investigate the effects of rapid thermal annealing (RTA) on GaN films grown on sapphire (0001) substrates by gas-source molecular-beam epitaxy, The Raman spectra showed the presence of the E-2 (high) mode of GaN and shift of this mode from 572 to 568 cm(-1) caused by annealing. The results showed that RTA has a significant effect on the strain relaxation caused by the lattice and thermal expansion misfit between the GaN epilayer and the substrate. The PL peak exhibited a blueshift in its energy position and a decrease in the full width at half maximum after annealing, indicating an improvement in the optical quality of the film. Furthermore, a green luminescence appeared after annealing and increased in intensity with increasing annealing time. This effect was attributed to H concentration variation in the GaN film, which was measured by NRA. A high H concentration exists in as-grown GaN, which can neutralize the deep level, and the H-bonded complex dissociates during RTA, This leads to the appearance of a luminescent peak in the PL spectrum. (C) 1998 American Institute of Physics.
Resumo:
The effect of rapid thermal annealing (RTA) in a Nz ambient up to 900 degrees C has been investigated for GaN films grown on sapphire(0 0 0 1) substrates. Raman spectra, X-ray diffractometry and Hall-effect studies were performed for this purpose. The Raman spectra show the presence of the E-2 (high) mode and a shift in the wave number of this mode with respect to the annealing processing. This result suggests the presence and relaxation of residual stress due to thermal expansion misfit in the films which are confirmed by X-ray measurements and the structure quality of GaN epilayer was improved. Furthermore, the electron mobility increased at room temperature with respect to decrease of background electron concentration after RTA. (C) 1998 Elsevier Science B.V. All rights reserved.
Resumo:
In this work, InAs quantum dots (QDs) grown on a linear graded InGaAs metamorphic buffer layer by molecular beam epitaxy have been investigated. The growth of the metamorphic buffer layers was carefully optimized, yielding a smooth surface with a minimum root mean square of roughness of less than 0.98 nm as measured by atomic force microscopy (AFM). InAs QDs were then grown on the buffer layers, and their emission wavelength at room-temperature is 1.49 mu m as measured by photoluminescence (PL). The effects of post-growth rapid thermal annealing (RTA) on the optical properties of the InAs QDs were investigated. After the RTA, the PL peak of the QDs was blue-shifted and the full width at half maximum decreased.
Resumo:
It is found that both methods using either continuous Sb supply or pre-deposition of a very thin Sb layer are efficient for the Sb-assisted molecular beam epitaxy growth of highly strained InGaAs/GaAs quantum wells (QWs). The emission of QWs is extended to long wavelength close to 1.25 mu m with high luminescence efficiency at room temperature. The influence of rapid thermal annealing (RTA) on the photoluminescence intensity critically depends on the annealing temperature and duration for highly strained QWs. A relatively low RTA temperature of 700 degrees C with a short duration of 10 s is suggested for optimizing the annealing effect. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Neutron transmutation doped (NTD) silicon crystals grown in a hydrogen atmosphere have been investigated by infrared absorption spectroscopy at a low temperature (10 K). An effective-mass-like donor state HD0/+ has been found at 110.8 me V below the conduction band bottom after rapid thermal annealing (RTA). The HD0/+ formation mechanism after NTD and RTA is briefly discussed, and tentatively attributed to H atoms present in the vicinity of some residual irradiation defects, like a complex of a H atom and a H-saturated vacancy.
Resumo:
Rapid thermal annealing of arsenic implanted Si1-xGex was studied by secondary ion-mass spectroscopy (SIMS) and spreading resistance probe (SRP) over a wide range of Ge fractions (0-43%). Redistribution of the implanted arsenic was followed as a function of Ge content and annealing temperature. Arsenic concentration profiles from SIMS indicated that the behavior of implanted arsenic in Si1-xGex after RTA was different from that in Si, and the Si1-xGex samples exhibited box-shaped, concentration-dependent diffusion profiles with increasing Ge content. The maximum concentrations of electrically active arsenic in Si1-xGex was found to decrease with increasing Ge content. Experimental results showed that the arsenic diffusion is enhanced with increasing temperature for certain Ge content and strongly dependent on Ge content, and the higher Ge content, the faster As diffusion.
Resumo:
Photoluminescence enhancement of (NH4)(2)S-x passivated InP surface followed by rapid thermal annealing (RTA) has been investigated by using photoluminescence (PL), Auger electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS), An increase in PL intensity of up to 10 times was observed after sulfur passivation and RTA treatment compared to unpassivated InP surface. XPS measurement results show that introduction of RTA process can enhance the sulfur remaining on the passivated surface to bond to indium but no evidence of S-P bond is noticeable. Passivation enhancement mechanism is discussed.
Resumo:
Photoluminescence (PL) and electrical characteristics of SI-GaAs, Si+-implanted and following rapid thermal annealing (RTA), were investigated, The PL spectra of Si-GA-C-As, Ga-i-Si-As, and V-As-Si-As were obtained. This paper concentrates on the PL peak at 1.36 eV which was proven as an emission of the Si-Ga-V-Ga combination by Si+ + P+ dual implantation. The results indicate that the peak at 1.36 eV appears when the ratio of As:Ga increased during the processing. Also high activation was obtained for the sample under the same conditions. More discussion on the mechanism of Si+ implanted SI-GaAs has been made based on the Morrow model [J. Appl. Phys, 64 (1988) 1889].
Resumo:
Ga(+)ion implantation followed by rapid thermal annealing (RTA) was used to enhance the interdiffusion in GaAs/AlGaAs single Quantum Wells(SQWs). The extent of intermixing was found to be dependent on the well depth, number of implanted ions and annealing time. A very fast interdiffusion process occurs at the initial annealing stage. After that, the enhanced diffusion coefficient goes back to the umimplanted value. We propose a two-step model to explain the diffusion process as a function of the annealing time : a fast diffusion process and a saturated diffusion process. The interdiffusion coefficient of the fast diffusion was found to be of well depth dependence and estimated to be in the range of 5.4x10(-16) similar to 1.5x10(-15)cm(2)s(-1). Copyright (C) 1996 Published by Elsevier Science Ltd
Resumo:
Quantum well disordering of GaAs/AlGaAs multiple quantum well(MQW) has been accomplished with only plasma enhanced chemical vapor deposited (PECVD) SiN cap layer growth. The amount of blue shift increases with SiN growing time. This result has been explained by the vacancy indiffusion during PECVD SiN growth. Rapid thermal annealing (RTA) of the sample after SiN cap layer growth at 850 degrees C for 35 s caused a larger amount of blue shift than those obtained without RTA. By considering the model of Al diffusion from AlGaAs barrier into GaAs QWs together with the result from photoluminescence (PL) measurement, Al diffusion coefficients were calculated. The Al diffusion coefficient due to PECVD SiN was estimated at about 3 x10(-17) cm(2)/s. It was possible to extract the effect of RTA on the QW disordering, which showed that the amount of the blue shift and the Al diffusion coefficient due only to RTA increases with SiN cap layer thickness as reported by Chi et al.(10))
Resumo:
Chemically vapour deposited silicon on sapphire (SOS) films 0.25 mu m thick were implanted with Si-28(+) and recrystallized in solid phase by furnace annealing (FA) and IR rapid thermal annealing (RTA) in our laboratory. An improvement in crystalline quality can be obtained using both annealing procedures. After FA, it is hard to retain the intrinsic high resistivity value(10(4)-10(5) Ohm cm) observed in as-grown SOS films, so the improvement process cannot be put to practical use effectively. However, it is demonstrated that by properly adjusting the implantation and RTA conditions, significant improvements in both film quality and film autodoping can be accomplished. This work describes a modified double solid phase epitaxy process in which the intrinsic high resistivities of the as grown SOS films are retained. The mechanism of suppression of Al autodoping is discussed.
Resumo:
用LPCVD在si(111)上异质外延了n型3C-SiC,并在所外延的3C-SiC上蒸发Au/Ti,通过不同温度下的RTA(快速热退火)形成欧姆接触。用两种不同的传输线模型对Ti/3C-SiC欧姆接触的ρc(比接触电阻率)进行测量,在750℃退火后Ti/3C-SiC的ρc达到了最低值为3.68×10^-5Ω·cm^2这满足了应用的要求。AES分析结果还表明由于Ti的氧化,更高温度下的退火会使ρc增大。
Resumo:
研究分子束外延(MBE)生长的应变In_(0.2)Ga_(0.8)As/GaAs折射率梯度变化异质结单量子阱激光二极管的快速热处理(RTA)效应。结果表明,RTA移除了InCaAs/GaAs界面非辐射中心,提高77K光致发光效率和有源层电子发射。同时Al和Ga原子互扩散,也增加了AlGaAs波导层DX中心浓度。RTA处理后样品电流冲击老化实验证明DX中心浓度呈现出相应的增加。这表明DX中心可能是激光二极管性能退化的原因之一。
Resumo:
对GS-MBE生长的Si/SiGe/Si量子阱结构用快速热退火(RTA)方法进行处理,研究了其在低温下的光致发光(PL)特性。发现存在一个最佳退火温度范围,使得PL谱的发光得到改善。随着退火温度的继续提高,PL谱线发生兰移,发光强度下降。认为这种趋势是由内部缺陷和位错以及Si/SiGe/Si量子阱结构在退火过程中相应的变化所导致。辅助的缺陷显微观察证实了此结论。
Resumo:
Effects of SiO2, encapsulation and rapid thermal annealing (RTA) on the optical properties of GaNAs/GaAs single quantum well (SQW) were studied by low temperature photoluminescence (PL). A blueshift of the PL peak energy for both the SiO2-capped region and the bare region was observed. The results were attributed to the nitrogen reorganization in the GaNAs/GaAs SQW. It was also shown that the nitrogen reorganization was obviously enhanced by SiO2 cap-layer. A simple model [1] was used to describe the SiO2-enhanced blueshift of the low temperature PL peak energy.