207 resultados para Photodetectors
Resumo:
A back-incident Si-0.65 Ge-0.35/Si multiple quantum-well resonant-cavity-enhanced photodetector operating near 1.3 mum is demonstrated on a separation-by-implantation-oxygen substrate. The resonant cavity is composed of an electron-beam evaporated SiO2-Si distributed Bragg reflector as a top mirror and the interface between the buried SiO2 and the Si substrate as a bottom mirror. We have obtained the responsivity as high as 31 mA/WI at 1.305 mum and the full width at half maximum of 14 nm.
Resumo:
Interdigital metal-semiconductor-metal (MSM) ultraviolet photoconductive detectors have been fabricated on undoped GaN films grown by molecular beam epitaxy (MBE), Response dependence on wavelength, applied current, excitation powers and chopper frequency has been extensively investigated. It is shown that the photodetector's spectral response remained nearly constant for wavelengths above the band gap and dropped sharply by almost three orders of magnitude for wavelengths longer than the band gap. It increases linearly with the applied constant current, but very nonlinearly with illuminating power. The photodetectors showed high photoconductor gains resulting from trapping of minority carriers (holes) at acceptor impurities or defects. The results demonstrated the high quality of the GaN crystal used to fabricate these devices. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
We report on a Si1-xGex/Si multiple quantum-well resonant-cavity-enhanced (RCE) photodetector with a silicon-on-oxide reflector as the bottom mirror operating near 1.3 mu m. The breakdown voltage of the photodetector is above 18 V and the dark current density at 5 V reverse bias is 12 pA/mu m(2). The RCE photodetector shows enhanced responsivity with a clear peak at 1.285 mu m and the peak responsivity is measured around 10.2 mA/W at a reverse bias of 5 V. The external quantum efficiency at 1.3 mu m is measured to be 3.5% under reverse bias of 16 V, which is enhanced three- to fourfold compared with that of a conventional p-i-n photodetector with a Ge content of 0.5 reported in 1995 by Huang [Appl. Phys. Lett. 67, 566 (1995)]. (C) 2000 American Institute of Physics. [S0003-6951(00)00628-8].
Resumo:
In this paper, an experiment on tunable resonant cavity enhanced (RCE) photodetector with external cavity is reported. It is the first time to realize a tunable RCE photodetector in China. A tuning range about 10 nm has been obtained and further extension is expected. Corresponding theoretical analysis and discussions are presented. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
We report on the fabrication of circular waveguide photodetectors with a response near 1.3 mu m wavelength using SiGe/Si multiple quantum wells. The quantum efficiency of the circular waveguide photodetector is improved when compared with that of the rib waveguide photodetector in the same wavelength at 1.3 mu m The frequency response of the photodetectors is simulated. The emciency-bandwidth product of the circular waveguide photodetectors is improved correspondingly. (C) 2000 Published by Elsevier Science B.V. All rights reserved.
Resumo:
We report the device performance of normal-incidence (In, Ga)As/GaAs quantum dot intersubband infrared photodetectors. A primary intersubband transition peak is observed at the wavelength of 13 mu m (E-0 --> E-1) and a secondary peak at 11 mu m (E-0 --> E-2). The measured energy spacing in the conduction band of the quantum dots is in good agreement with low temperature photoluminescence measurement and calculations. A peak detectivity of 1 x 10(10) cm Hz(1/2)/W at 13 mu m was achieved at 40 K for these devices. (C) 1998 American Institute of Physics. [S0003-6951(98)01440-5].
Resumo:
Silicon-based resonant-cavity-enhanced photodetectors (RCE-PD) with Si, Ge islands and InGaAs as absorption materials were introduced, respectively. The Ge islands and Si RCE-PD had a membrane structure and the Si-based InGaAs RCE-PDs were fabricated by bonding technology.
Resumo:
Vertical PIN ultraviolet photodetectors based on 4H-SiC homoepilayers are presented. The growth of the 4H-SiC homoepilayers was carried out in a LPCVD system. The size of the active area of the photodetector was 300 x 300 mu m(2). The dark and illuminated I-V characteristics were measured at reverse biases from 0 V to 30 V at room temperature. The illuminated current was at least two orders of magnitude higher than the dark current at a bias of below 12 V. The photoresponse was measured from 200 nm to 400 nm at different reverse biases and the peak values of the photo response were located at 3 10 nm. The calculated spectral detectivity D* was shown to be higher than 10(13) cmHz(1/2)/W from 260 to 360 nm with a peak value of 5.9 x 10(13) cmHz(1/2) /W at 310 nm. The peak value of the photoresponse was hundreds of times higher than the response at 400 nm, which showed the device had good visible blind performance. (c) 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
Si-based membrane RCE photodetectors were introduced. The RCE photodiodes were fabricated on silicon membranes formed from SOI substrate. Compared with the conventional p-i-n photodiode, the responsivity has a threefold enhancement.
Resumo:
Low cost Si-based tunable InGaAs RCE photodetectors operating at 1.3similar to1.6 mum were fabricated using sol-gel bonding. A tuning range of 14.5 nm, a quantum efficiency of 44% at 1476 nm and a 3-dB bandwidth of 1.8 GHz were obtained.
Resumo:
Ge-on-silicon-on-insulator p-i-n photodetectors were fabricated using an ultralow-temperature Ge buffer by ultrahigh-vacuum chemical vapor deposition. For a detector of 70-mu m diameter, the 1-dB small-signal compression power was about 110.5 mW. The 3-dB bandwidth at 3-V reverse bias was 13.4 GHz.
Resumo:
By considering all possible high order diffracted waves, the authors investigate the spectral response of two-dimensional gratings for quantum well infrared photodetectors (QWIPs). A new method is proposed that using long period gratings may improve grating quality and reduce the resulting cross talk in grating-coupled QWIPs. A sensitivity analysis indicates that the influence of variation of the grating constant on the coupling efficiency is less sensitive for the long period gratings than for the short ones. A large coupling efficiency has been demonstrated for long period gratings. The calculated wide grating response spectra are in good agreement with the experiment result. (C) 1996 American Institute of Physics.
Resumo:
By considering all possible high order diffracted waves, the authors calculate the coupling efficiency of long period gratings for 3-5 mu m quantum-well infra-red photodetectors (QWIPs) on the basis of the modal expansion model (MEM). A large coupling efficiency for 3-5 mu m QWIPs has been demonstrated. This greatly reduces the difficulties in fabricating 3-5 mu m grating coupled QWIPs and opens the way to fabricate high performance 3-5 mu m and two colour QWIPs image arrays.
Resumo:
A novel bonding method using silicate gel as bonding medium is developed.High reflective SiO2/Si mirrors deposited on silicon substrates by e-beam deposition are bonded to the active layers at a low temperature of 350℃ without any special treatment on bonding surfaces.The reflectivities of the mirrors can be as high as 99.9%.A Si-based narrow band response InGaAs photodetector is successfully fabricated,with a quantum efficiency of 22.6% at the peak wavelength of 1.54μm,and a full width at half maximum of about 27nm.This method has a great potential for industry processes.
Resumo:
The theoretical analysis and experimental measurement on the incident angle dependence of quantum efficiency of GaAs based resonant cavity enhanced (RCE) photodetector is presented. By changing the angle of incoming light, about 40 nm wavelength variation of peak quantum efficiency is obtained. The peak quantum efficiency and optical bandwidth at different mode corresponding to different angle incidence is characterized with different absorption dependence on wavelength. The convenient angle tuning of resonant mode will be helpful to relax the strict constraint of RCE photodetector to light source with narrow emission spectrum such applications in space optical detections and communications.