978 resultados para Non-smooth vector fields
Resumo:
In this paper we present results for the systematic study of reversible-equivariant vector fields - namely, in the simultaneous presence of symmetries and reversing symmetries - by employing algebraic techniques from invariant theory for compact Lie groups. The Hilbert-Poincare series and their associated Molien formulae are introduced,and we prove the character formulae for the computation of dimensions of spaces of homogeneous anti-invariant polynomial functions and reversible-equivariant polynomial mappings. A symbolic algorithm is obtained for the computation of generators for the module of reversible-equivariant polynomial mappings over the ring of invariant polynomials. We show that this computation can be obtained directly from a well-known situation, namely from the generators of the ring of invariants and the module of the equivariants. (C) 2008 Elsevier B.V, All rights reserved.
Resumo:
The goal of this paper is study the global solvability of a class of complex vector fields of the special form L = partial derivative/partial derivative t + (a + ib)(x)partial derivative/partial derivative x, a, b epsilon C(infinity) (S(1) ; R), defined on two-torus T(2) congruent to R(2)/2 pi Z(2). The kernel of transpose operator L is described and the solvability near the characteristic set is also studied. (c) 2008 Elsevier Inc. All rights reserved.
Resumo:
We study the Gevrey solvability of a class of complex vector fields, defined on Omega(epsilon) = (-epsilon, epsilon) x S(1), given by L = partial derivative/partial derivative t + (a(x) + ib(x))partial derivative/partial derivative x, b not equivalent to 0, near the characteristic set Sigma = {0} x S(1). We show that the interplay between the order of vanishing of the functions a and b at x = 0 plays a role in the Gevrey solvability. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
We establish in this paper a lower bound for the volume of a unit vector field (v) over right arrow defined ou S(n) \ {+/-x}, n = 2,3. This lower bound is related to the sum of the absolute values of the indices of (v) over right arrow at x and -x.
Resumo:
In this work are studied periodic perturbations, depending on two parameters, of planar polynomial vector fields having an annulus of large amplitude periodic orbits, which accumulate on a symmetric infinite heteroclinic cycle. Such periodic orbits and the heteroclinic trajectory can be seen only by the global consideration of the polynomial vector fields on the whole plane, and not by their restriction to any compact set. The global study involving infinity is performed via the Poincare Compactification. It is shown that, for certain types of periodic perturbations, one can seek, in a neighborhood of the origin in the parameter plane, curves C-(m) of subharmonic bifurcations, for which the periodically perturbed system has subharmonics of order m, for any integer m.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We study a class of quadratic reversible polynomial vector fields on S-2. We classify all the centers of this class of vector fields and we characterize its global phase portrait. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this paper we deal with discontinuous vector fields on R-2 and we prove that the analysis of their local behavior around a typical singularity can be treated via singular perturbation. The regularization process developed by Sotomayor and Teixeira is crucial for the development of this work. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Singular perturbations problems in dimension three which are approximations of discontinuous vector fields are studied in this paper. The main result states that the regularization process developed by Sotomayor and Teixeira produces a singular problem for which the discontinuous set is a center manifold. Moreover, the definition of' sliding vector field coincides with the reduced problem of the corresponding singular problem for a class of vector fields.
Resumo:
We study the dynamics of a class of reversible vector fields having eigenvalues (0, alphai, -alphai) around their symmetric equilibria. We give a complete list of all normal forms for such vector fields, their versal unfoldings, and the corresponding bifurcation diagrams of the codimensional-one case. We also obtain some important conclusions on the existence of homoclinic and heteroclinic orbits, invariant tori and symmetric periodic orbits.
Resumo:
We investigate in this paper the topological stability of pairs (omega, X), where w is a germ of an integrable 1-form and X is a germ of a vector field tangent to the foliation determined by omega.