Invariant theory and reversible-equivariant vector fields
Contribuinte(s) |
UNIVERSIDADE DE SÃO PAULO |
---|---|
Data(s) |
20/10/2012
20/10/2012
2009
|
Resumo |
In this paper we present results for the systematic study of reversible-equivariant vector fields - namely, in the simultaneous presence of symmetries and reversing symmetries - by employing algebraic techniques from invariant theory for compact Lie groups. The Hilbert-Poincare series and their associated Molien formulae are introduced,and we prove the character formulae for the computation of dimensions of spaces of homogeneous anti-invariant polynomial functions and reversible-equivariant polynomial mappings. A symbolic algorithm is obtained for the computation of generators for the module of reversible-equivariant polynomial mappings over the ring of invariant polynomials. We show that this computation can be obtained directly from a well-known situation, namely from the generators of the ring of invariants and the module of the equivariants. (C) 2008 Elsevier B.V, All rights reserved. FCT[SFRH/BPD/34534/2006] Fundação para a Ciência e a Tecnologia de Portugal (FCT) Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) FAPESP[07/03519-6] CNPq Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) Portuguese and European Community structural funds Fundação para a Ciência e a Tecnologia de Portugal (FCT) |
Identificador |
JOURNAL OF PURE AND APPLIED ALGEBRA, v.213, n.5, p.649-663, 2009 0022-4049 http://producao.usp.br/handle/BDPI/28851 10.1016/j.jpaa.2008.08.002 |
Idioma(s) |
eng |
Publicador |
ELSEVIER SCIENCE BV |
Relação |
Journal of Pure and Applied Algebra |
Direitos |
restrictedAccess Copyright ELSEVIER SCIENCE BV |
Palavras-Chave | #RELATIVE INVARIANTS #Mathematics, Applied #Mathematics |
Tipo |
article original article publishedVersion |