Nonexistence of global solutions for a class of complex vector fields on two-torus


Autoria(s): SILVA, Paulo L. Dattori da
Contribuinte(s)

UNIVERSIDADE DE SÃO PAULO

Data(s)

20/10/2012

20/10/2012

2009

Resumo

The goal of this paper is study the global solvability of a class of complex vector fields of the special form L = partial derivative/partial derivative t + (a + ib)(x)partial derivative/partial derivative x, a, b epsilon C(infinity) (S(1) ; R), defined on two-torus T(2) congruent to R(2)/2 pi Z(2). The kernel of transpose operator L is described and the solvability near the characteristic set is also studied. (c) 2008 Elsevier Inc. All rights reserved.

FAPESR

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Identificador

JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, v.351, n.2, p.543-555, 2009

0022-247X

http://producao.usp.br/handle/BDPI/28853

10.1016/j.jmaa.2008.10.039

http://dx.doi.org/10.1016/j.jmaa.2008.10.039

Idioma(s)

eng

Publicador

ACADEMIC PRESS INC ELSEVIER SCIENCE

Relação

Journal of Mathematical Analysis and Applications

Direitos

restrictedAccess

Copyright ACADEMIC PRESS INC ELSEVIER SCIENCE

Palavras-Chave #Global solvability #Solvability near the characteristic set #Complex vector fields #Condition (P) #Sussmann orbits #Propagation of singularities #Bicharacteristics #INFINITE TYPE #SOLVABILITY #TORUS #Mathematics, Applied #Mathematics
Tipo

article

original article

publishedVersion