Hopf-zero bifurcations of reversible vector fields


Autoria(s): Buzzi, C. A.; Teixeira, M. A.; Yang, J.
Contribuinte(s)

Universidade Estadual Paulista (UNESP)

Data(s)

20/05/2014

20/05/2014

01/05/2001

Resumo

We study the dynamics of a class of reversible vector fields having eigenvalues (0, alphai, -alphai) around their symmetric equilibria. We give a complete list of all normal forms for such vector fields, their versal unfoldings, and the corresponding bifurcation diagrams of the codimensional-one case. We also obtain some important conclusions on the existence of homoclinic and heteroclinic orbits, invariant tori and symmetric periodic orbits.

Formato

623-638

Identificador

http://dx.doi.org/10.1088/0951-7715/14/3/310

Nonlinearity. Bristol: Iop Publishing Ltd, v. 14, n. 3, p. 623-638, 2001.

0951-7715

http://hdl.handle.net/11449/36914

10.1088/0951-7715/14/3/310

WOS:000168924100010

Idioma(s)

eng

Publicador

Iop Publishing Ltd

Relação

Nonlinearity

Direitos

closedAccess

Tipo

info:eu-repo/semantics/article