Gevrey solvability near the characteristic set for a class of planar complex vector fields of infinite type
Contribuinte(s) |
UNIVERSIDADE DE SÃO PAULO |
---|---|
Data(s) |
20/10/2012
20/10/2012
2009
|
Resumo |
We study the Gevrey solvability of a class of complex vector fields, defined on Omega(epsilon) = (-epsilon, epsilon) x S(1), given by L = partial derivative/partial derivative t + (a(x) + ib(x))partial derivative/partial derivative x, b not equivalent to 0, near the characteristic set Sigma = {0} x S(1). We show that the interplay between the order of vanishing of the functions a and b at x = 0 plays a role in the Gevrey solvability. (C) 2008 Elsevier Inc. All rights reserved. CNPq Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) FAPESP Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) |
Identificador |
JOURNAL OF DIFFERENTIAL EQUATIONS, v.246, n.4, p.1673-1702, 2009 0022-0396 http://producao.usp.br/handle/BDPI/28857 10.1016/j.jde.2008.10.028 |
Idioma(s) |
eng |
Publicador |
ACADEMIC PRESS INC ELSEVIER SCIENCE |
Relação |
Journal of Differential Equations |
Direitos |
restrictedAccess Copyright ACADEMIC PRESS INC ELSEVIER SCIENCE |
Palavras-Chave | #Semi-global solvability #Gevrey solvability #Fourier series #Whitney extension #GLOBAL PROPERTIES #TORUS #SINGULARITIES #PROPAGATION #EQUATION #SYSTEMS #2-TORUS #Mathematics |
Tipo |
article original article publishedVersion |