Gevrey solvability near the characteristic set for a class of planar complex vector fields of infinite type


Autoria(s): BERGAMASCO, Adalberto P.; SILVA, Paulo L. Dattori da; EBERT, Marcelo R.
Contribuinte(s)

UNIVERSIDADE DE SÃO PAULO

Data(s)

20/10/2012

20/10/2012

2009

Resumo

We study the Gevrey solvability of a class of complex vector fields, defined on Omega(epsilon) = (-epsilon, epsilon) x S(1), given by L = partial derivative/partial derivative t + (a(x) + ib(x))partial derivative/partial derivative x, b not equivalent to 0, near the characteristic set Sigma = {0} x S(1). We show that the interplay between the order of vanishing of the functions a and b at x = 0 plays a role in the Gevrey solvability. (C) 2008 Elsevier Inc. All rights reserved.

CNPq

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

FAPESP

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Identificador

JOURNAL OF DIFFERENTIAL EQUATIONS, v.246, n.4, p.1673-1702, 2009

0022-0396

http://producao.usp.br/handle/BDPI/28857

10.1016/j.jde.2008.10.028

http://dx.doi.org/10.1016/j.jde.2008.10.028

Idioma(s)

eng

Publicador

ACADEMIC PRESS INC ELSEVIER SCIENCE

Relação

Journal of Differential Equations

Direitos

restrictedAccess

Copyright ACADEMIC PRESS INC ELSEVIER SCIENCE

Palavras-Chave #Semi-global solvability #Gevrey solvability #Fourier series #Whitney extension #GLOBAL PROPERTIES #TORUS #SINGULARITIES #PROPAGATION #EQUATION #SYSTEMS #2-TORUS #Mathematics
Tipo

article

original article

publishedVersion