968 resultados para Method validation
Resumo:
A derivative spectrophotometric method was validated for quantification of acyclovir in poly (n-butylcyanoacrylate) (PBCA) nanoparticles. Specificity, linearity, precision, accuracy, recovery, detection (LOD) and quantification (LOQ) limits were established for method validation. First-derivative at 295.2 nm eliminated interferences from nanoparticle ingredients and presented linearity for acyclovir concentrations ranging from 1.25 to 40.0 µg/mL (r = 0.9999). Precision and accuracy data demonstrated good reproducibility. Recovery ranged from 99.3 to 101.2. LOD was 0.08 µg/mL and LOQ, 0.25 µg/mL. Thus, the proposed method proved to be easy, low cost, and accurate, and therefore, an useful alternative to quantify acyclovir in nanoparticles.
Resumo:
Quetiapine is an atypical antipsychotic used to treat schizophrenia. However, despite great interest for its chronic therapeutic use, quetiapine has some important side effects such as weight gain induction. The development of a quetiapine nanocarrier can potentially target the drug into central nervous system, resulting in a reduction of systemic side effects and improved patient treatment. In the present work, a simple liquid chromatography/ultraviolet detection (LC/UV) analytical method was developed and validated for quantification of total quetiapine content in lipid core nanocapsules as well as for determination of incorporation efficiency. An algorithm proposed by Oliveira et al. (2012) was applied to characterize the distribution of quetiapine in the pseudo-phases of the nanocarrier, leading to a better understanding of the quetiapine nanoparticles produced. The analytical methodology developed was specific, linear in the range of 0.5 to 100 µg mL−1 (r2 > 0,99), and accurate and precise (R.S.D < ±5%). The absolute recovery of quetiapine from the nanoparticles was approximately 98% with an incorporation efficiency of approximately 96%. The results indicated that quetiapine was present in a type III distribution according to the algorithm, and was mainly located in the core of the nanoparticle because of its logD in the formulation pH (6.86 ± 0.4).
Resumo:
Background: Oxidative modification of low-density lipoprotein (LDL) plays a key role in the pathogenesis of atherosclerosis. LDL(-) is present in blood plasma of healthy subjects and at higher concentrations in diseases with high cardiovascular risk, such as familial hypercholesterolemia or diabetes. Methods: We developed and validated a sandwich ELISA for LDL(-) in human plasma using two monoclonal antibodies against LDL(-) that do not bind to native LDL, extensively copper-oxidized LDL or malondialdehyde-modified LDL. The characteristics of assay performance, such as limits of detection and quantification, accuracy, inter- and intra-assay precision were evaluated. The linearity, interferences and stability tests were also performed. Results: The calibration range of the assay is 0.625-20.0 mU/L at 1: 2000 sample dilution. ELISA validation showed intra- and inter- assay precision and recovery within the required limits for immunoassays. The limits of detection and quantification were 0.423 mU/L and 0.517 mU/L LDL(-), respectively. The intra- and inter- assay coefficient of variation ranged from 9.5% to 11.5% and from 11.3% to 18.9%, respectively. Recovery of LDL(-) ranged from 92.8% to 105.1%. Conclusions: This ELISA represents a very practical tool for measuring LDL(-) in human blood for widespread research and clinical sample use. Clin Chem Lab Med 2008; 46: 1769-75.
Resumo:
A simple, rapid and inexpensive method for the determination of sparfloxacin in tablets is described. The procedure is based on the use of volumetric dosage in a nonaqueous medium in glacial acetic acid with 0.1 M perchloric acid. The method validation yielded good results and included precision and accuracy. It was also found that the excipients in the commercial tablet preparation did not interfere with the assay. (C) 2001 Elsevier B.V. B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A rapid, accurate, and sensitive high-performance liquid chromatographic (HPLC) method was developed and validated for the determination of ceftazidime in pharmaceuticals. The method validation parameters yielded good results and included range, linearity, precision, accuracy, specificity, and recovery. The excipients in the commercial powder for injection did not interfere with the assay. Reversed-phase chromatography was used for the HPLC separation on a Waters C18 (WAT 054275; Milford, MA) column with methanol-water (70 + 30, v/v) as the mobile phase pumped isocratically at a flow rate of 1.0 mL/min. The effluent was monitored at 245 nm. The calibration graph for ceftazidime was linear from 50.0 to 300.0 mu g/mL. The values for interday and intraday precision (relative standard deviation) were < 1 %. The results obtained by the HPLC method were calculated statistically by analysis of variance. We concluded that the HPLC method is satisfactory for the determination of ceftazidime in the raw material and pharmaceuticals.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Multivariate quality control studies applied to Ca(II) and Mg(II) determination by a portable method
Resumo:
A portable or field test method for simultaneous spectrophotometric determination of calcium and magnesium in water using multivariate partial least squares (PLS) calibration methods is proposed. The method is based on the reaction between the analytes and methylthymol blue at pH 11. The spectral information was used as the X-block, and the Ca(II) and Mg(II) concentrations obtained by a reference technique (ICP-AES) were used as the Y-block. Two series of analyses were performed, with a month's difference between them. The first series was used as the calibration set and the second one as the validation set. Multivariate statistical process control (MSPC) techniques, based on statistics from principal component models, were used to study the features and evolution with time of the spectral signals. Signal standardization was used to correct the deviations between series. Method validation was performed by comparing the predictions of the PLS model with the reference Ca(II) and Mg(II) concentrations determined by ICP-AES using the joint interval test for the slope and intercept of the regression line with errors in both axes. (C) 1998 John Wiley & Sons, Ltd.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This paper describes a simple, environmentally friendly and rapid quantitative spot test procedure for the determination of captopril (CPT) in bulk drug and in pharmaceutical formulations by using diffuse reflectance spectroscopy. The proposed method is based on the reflectance measurements of the orange compound (λ max 490 nm) produced by the spot test reaction between CPT and p-chloranil (CL). Under optimal conditions, calibration curves were obtained for CPT by plotting the optical density of the reflectance signal (A R) vs. the log of the mol L -1 concentration, from 6.91×10 -3 to 1.17×10 -1, with a good coefficient of determination (R 2 = 0.9992). The common excipients used as additives in pharmaceuticals do not interfere in the proposed method. The method was applied to determine CPT in commercial pharmaceutical formulations. The results obtained by the proposed method are compared favorably with those obtained by an official procedure at 95% confidence level. The method validation results showed that the sensitivity and selectivity of the methods were adequated for drug monitoring in industrial quality control laboratories. © 2011 Moment Publication.
Resumo:
The validation of a microbiological assay, applying agar diffusion method for determination of the active of cefuroxime in power for injection, is described. Using a strain of Micrococcus luteus ATCC 9341 as the test organism, cefuroxime was measured in concentrations ranging from 30.0 to 120.0 μg/mL. The method validation showed that it is linear (r = 0.9999), precise (relative standard deviation = 0.37%) and accurate (it measured the added quantities). Microbiological assay is satisfactory for quantitation of cefuroxime in powder for injection and the validity of the proposed bioassay, which is a simple and a useful alternative methodology for cefuroxime determination in routine quality control.
Resumo:
Zebrafish are currently used at various stages of the drug discovery process and can be a useful and cost-effective alternative to some mammalian models. Nitric oxide (NO) plays an important role in physiology of zebrafish. The availability of appropriate analytical techniques to quantify the NO is crucial for studying its role in physiological and pathological conditions. This work aimed at establishing a high-performance liquid chromatography method for determination of NO levels in zebrafish larvae. Attempts were also made to assess the normal levels of NO at the first days postfertilization and the possible changes under pathological conditions. The method validation was quantitatively evaluated in terms of sensitivity, specificity, precision, accuracy, linearity, and recovery. NO levels from zebrafish larvae at the first days postfertilization and larvae challenged to N(G)-nitro-L-arginine methyl ester, sodium nitroprusside, Escherichia coil lipopolysaccharide, and copper sulfate were analyzed. The samples were derivatized with 2,3-diaminonaphthalene, and fluorescence detection was used for the indirect determination of NO. The method showed a good performance for all validation parameters evaluated and was efficient to monitor changes in NO concentration under physiological and pathophysiological conditions. This method might represent a powerful tool to be applied in NO studies with zebrafish larvae. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
A derivative spectrophotometric method was validated for quzintification of acyclovir in poly (n-butylcyanoacrylate) (PBCA) nanoparticles. Specificity, linearity. precision, accuracy, recovery. detection (LOD) and quantification (LOQ) Inuits were established for method validation. First-derivative it 295.2 nm eliminated interferences from nanoparticle ingredients and presented linearity for acyclovir concentrations ranging front 1.25 to 40.0 mu g/mL. (r = 0.9999). Precision and accuracy data demonstrated good reproducibility. Recovery ranged from 99.3 to 101.2. LOD) was 0.08 mu g/mL and LOQ. 0.25 mu g/mL. Thus. the proposed method proved to be easy. low cost. and accurate, and therefore, an useful alternative to quantify acyclovir in nanoparticles.
Resumo:
A simple and fast method for the determination of Ca, Cu, Fe, Mg, Mn, Se and Zn in bovine semen by quadrupole inductively coupled plasma spectrometry (q-ICP-MS) is described. Prior to analysis, samples (200 mu L) were diluted 1:50 in a solution containing 0.01% v/v Triton (R) X-100 and 0.5% v/v nitric acid and directly analyzed by ICP-MS. The limits of detection of the method are 0.3, 0.03, 0.2, 0.04, 0.04, 0.03 and 0.03 mu g L-1 for Ca-44, Cu-63, Fe-57, Mg-24, Zn-64, Se-82 and Mn-55, respectively. For purposes of comparison and method validation, four ordinary bovine semen samples were directly analyzed by ICP-MS and by flame atomic absorption spectrometry (FAAS) or graphite furnace atomic absorption spectrometry (GF AAS), with no statistical difference between the techniques at the 95% level when applying the t-test. Then, the proposed method was applied in the determinations of Ca, Cu, Fe, Mg, Mn, Se and Zn in collected samples of bovine semen from different breeds, which are used in reproduction programs and artificial insemination.
Resumo:
A derivative spectrophotometric method was validated for quantification of acyclovir in poly (n-butylcyanoacrylate) (PBCA) nanoparticles. Specificity, linearity, precision, accuracy, recovery, detection (LOD) and quantification (LOQ) limits were established for method validation. First-derivative at 295.2 nm eliminated interferences from nanoparticle ingredients and presented linearity for acyclovir concentrations ranging from 1.25 to 40.0 µg/mL (r = 0.9999). Precision and accuracy data demonstrated good reproducibility. Recovery ranged from 99.3 to 101.2. LOD was 0.08 µg/mL and LOQ, 0.25 µg/mL. Thus, the proposed method proved to be easy, low cost, and accurate, and therefore, an useful alternative to quantify acyclovir in nanoparticles.