261 resultados para HETEROSTRUCTURE
Resumo:
We report on the fabrication of the nanowires with InGaAs/GaAs heterostructures on the GaAs(111) B substrate using selective-area metal organic vapor phase epitaxy. Fabry-Perot microcavity modes were observed in the nanowires with perfect end facets dispersed onto the silicon substrate and not observed in the free-standing nanowires. We find that the calculated group refractive indices only considering the material dispersion do not agree with the experimentally determined values although this method was used by some researchers. The calculated group refractive indices considering both the material dispersion and the waveguide dispersion agree with the experimentally determined values well. We also find that Fabry-Perot microcavity modes are not observable in the nanowires with the width less than about 180 nm, which is mainly caused by their poor reflectivity at the end facets due to their weak confinement to the optical field. (C) 2009 Optical Society of America
Resumo:
We report experimental results of the effect of Ka-band microwave on the spin dynamics of electrons in a two-dimensional electron system (2DES) in a GaAs/Al0.35Ga0.65As heterostructure via time-resolved Kerr rotation measurements. While the microwave reduces the transverse spin lifetime of electrons in the bulk GaAs, it significantly increases that in the 2DES, from 745 to 1213 ps, when its frequency is close to the Zeeman splitting of the electrons in the magnetic field. Such a microwave-enhanced spin lifetime is ascribed to the microwave-induced electron scattering which leads to a "motional narrowing" of spins via D'yakonov-Perel' mechanism.
Resumo:
AlGaN/GaN heterostructure using unintentionally doped AlN/GaN superlattices (SLs) as barrier layer is grown on C-plane sapphire by metal organic vapor deposition (MOCVD). Compared with the conventional Si-doped structure, electrical property is improved. An average sheet resistance of 287.1 Omega/square and high resistance uniformity of 0.82% are obtained across the 2-inch epilayer wafer with an equivalent Al composition of 38%. Hall measurement shows that the mobility of two-dimensional electron gas (2DEG) is 1852 cm(2)/V s with a sheet carrier density of 1.2 x 10(13) cm(-2) at room temperature. The root mean square roughness (RMS) value is 0.159 nm with 5 x 5 mu m(2) scan area and the monolayer steps are clearly observed. The reason for the property improvement is discussed. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The theoretical electron mobility limited by dislocation scattering of a two-dimensional electron gas confined near the interface of an AlxGa1-xN/GaN heterostructure is calculated. The accurate wave functions and electron distributions of the three lowest subbands for a typical structure are obtained by solving the Schrodinger and Poisson equations self-consistently. Based on the model of treating dislocation as a charged line, a simple scattering potential, a square-well potential, is utilized. The estimated mobility suggests that such a choice can simplify the calculation without introducing significant deviation from experimental data. It is also found that the dislocation scattering dominates both the low- and moderate-temperature mobilities and accounts for the nearly flattening-out behavior with increasing temperature. To clarify the role of dislocation scattering all standard scattering mechanisms are included in the calculation.
Resumo:
The structural and optical properties of MBE-grown GaAsSb/GaAs multiple quantum wells (MQWs) as well as strain-compensated GaAsSb/GaAs/GaAsP MQWs are investigated. The results of double crystal X-ray diffraction and reciprocal space mapping show that when strain-compensated layers are introduced, the interface quality of QW structure is remarkably improved, and the MQW structure containing GaAsSb layers with a high Sb composition can be coherently grown. Due to the influence of inserted GaAsP layers on the energy band and carrier distribution of QWs, the optical properties of GaAsSb/GaAs/GaAsP MQWs display a lot of features mainly characteristic of type-I QWs despite the type-II GaAsSb/GaAs interfaces exist in the structure. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Low-temperature photoluminescence measurement is performed on an undoped AlxGa1-xN/GaN heterostructure. Temperature-dependent Hall mobility confirms the formation of two-dimensional electron gas (2DEG) near the heterointerface. A weak photoluminescence (PL) peak with the energy of similar to 79meV lower than the free exciton (FE) emission of bulk GaN is related to the radiative recombination between electrons confined in the triangular well and the holes near the flat-band region of GaN. Its identification is supported by the solution of coupled one-dimensional Poisson and Schrodinger equations. When the temperature increases, the red shift of the 2DEG related emission peak is slower than that of the FE peak. The enhanced screening effect coming from the increasing 2DEG concentration and the varying electron distribution at two lowest subbands as a function of temperature account for such behaviour.
Resumo:
The subband structure and inter-subband transition as a function of gate voltage are determined by solving the Schrodinger and Poisson equations self-consistently in an AlxGa1-xN/GaN heterostructure. Different aluminum mole fraction and thickness of AlxGa1-xN barrier are considered. Calculation results show that energy difference between the first and second subband covers a wide range (from several tens to hundreds milli-electron volt) by applying different gate voltage, which corresponds to the midinfrared and long-wave infrared wavelength scope. Furthermore, such a modulation on the subband transition energy is much more pronounced for the structure with thin barrier. When the applied positive gate voltage is increased, the triangle well formed at the interface turns to be deeper and narrower, which enhances the confinement for electrons. As a result, the overlap between electron wave function at two subbands increases, and thus the optical intersubband transition also enhances its intensity. This tendency is in good agreement with the available data in the literature. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Fabrication of InGaAlAs MQW buried heterostructure (BH) lasers by narrow stripe selective MOVPE is demonstrated in this paper. High quality InGaAlAs MQWs were first grown by narrow stripe selective MOVPE without any etching process and assessed by analysing the cross sections and PL spectrums of the InGaAlAs MQWs. Furthermore, BHs were fabricated for the InGaAlAs MQW lasers by a developed unselective regrowth method, instead of conventional selective regrowth. The InGaAlAs MQW BH lasers exhibit good device characteristics, with a high internal differential quantum efficiency of 85% and a low internal loss of 6.7 cm(-1). Meanwhile, narrow divergence angles of the far field pattern are obtained for the fabricated lasers.
Resumo:
A novel unselective regrowth buried heterostructure (BH) long-wavelength superluminescent diode (SLD), which has a grade-strained bulk InGaAs active region, was developed by metalorganic vapor-phase epitaxy (MOVPE). The 3 dB emission spectrum bandwidth of the SLD is about 65 nm with the range from 1596 to 1661 nm at 90 mA and front 1585 to 1650 nm at 150 mA. An output power of 3.5 mW is obtained at 200 mA injection current under CW operation at room temperature. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Unselective regrowth for fabricating 1.5-mu m InGaAsP multiple-quantum well (MQW) distributed-feedback (DFB) buried heterostructure (BH) lasers is developed. The experimental results exhibit superior characteristics, such as a low threshold of 8.5 mA, high slope efficiency of 0.55 mW/mA, circular-like far-field patterns, the narrow line-width of 2.5 MHz, etc. The high performance of the devices effectively proves the feasibility of the new method to fabricate buried heterostructure lasers. (c) 2006 Society of Photo-Optical Instrumentation Engineers.
Resumo:
Peculiar current jumps and hysteresis in current-voltage curves are reported in an illuminated heterostructure consisting basically of a thick AlAs layer and a narrow GaAs quantum well. These novel features come from the photon-assisted transfer of electron-hole pairs and the resultant charge polarization in the structure, mainly caused by the resonant Gamma-X coupling at the heterointerfaces. Using the transfer-matrix method, the simulated current density-voltage curve reproduces the main features of the experimental observations in the case where the influence of resonant Gamma-X coupling at the heterointerfaces is included, further confirming the physical mechanism involved. The structure presented here may be used as a new type of photonic memory cell and also as an optically controlled switch.
Resumo:
The storage of photoexcited electron-hole pairs is experimentally carried out and theoretically realized by transferring electrons in both real and k spaces through resonant Gamma - X in an AlAs/GaAs heterostructure. This is proven by the peculiar capacitance jump and hysteresis in the measured capacitance-voltage curves. Our structure may be used as a photonic memory cell with a long storage time and a fast retrieval of photons as well.
Resumo:
A Gunn active layer is used as an X electron probe to detect the X tunnelling current in the GaAs-AlAs heterostructure, from which a new heterostructure intervalley transferred electron (HITE) device is obtained. In the 8 mm band, the highest pulse output power of these diodes is 2.65 W and the highest conversion efficiency is 18%. The dc and rf performance of the HITE devices was simulated by the band mixing resonant tunnelling theory and Monte Carlo transport simulation. The HITE effect has transformed the transit-time dipole-layer mode in the Gunn diode into a relaxation oscillation mode in the HITE device. From the comparison of simulated results to the measured data, the HITE effect is demonstrated straightforwardly.
Resumo:
A series of systematic experiments on the growth of high quality GaNAs strained layers on GaAs (001) substrate have been carried out by using DC active Nz plasma, assisted molecular beam epitaxy. The samples of GaNAs between 3 and 200 nm thick were evaluated by double crystal X-ray diffraction (XRD) and photoluminescence (PL) measurements. PL and XRD measurements for these samples are in good agreement. Some material growth and structure parameters affecting the properties of GaNAs/GaAs heterostructure were studied; they were: (1) growth temperature of GaNAs epilayer; (2) electrical current of active N-2 plasma; (3) Nz flow rate; (4) GaNAs growth rate; (5) the thickness of GaNAs strained layer. XRD and PL measurements showed that superlattice with distinct satellite peaks up to two orders and quantum well structure with intensity at 22 meV Fourier transform infrared spectroscopy (FWHM) can be achieved in molecular beam epitaxy (MBE) system. (C) 2000 Published by Elsevier Science S.A. All rights reserved.
Resumo:
A InGaAsP/InP self-aligned, native oxidized buried heterostructure (BH) distributed feedback (DFB) laser is proposed. It is as easy to process as the ridge waveguide DFB laser and has superior performance. The current aperture can be easily controlled without selective regrowth. The laser exhibits a low threshold of 5.0 mA with 36 dB side mode suppression ratio at the emission wavelength of 1.562 mu m. It emits in a single lobe with full width at half maximum angles of 33.6 degrees and 42.6 degrees for the lateral and vertical fields, respectively. Its beam is more circular than that of the as-grown BH laser because the lower refractive index of oxide compared to the as-grown layer and results in a larger lateral optical confinement. Its characteristic temperature (T-0) is 50 K at room temperature but increases in value at the higher temperature range. (C) 2000 American Institute of Physics. [S0003-6951(00)00812-3].