878 resultados para Hierarchical Bayesian Metaanalysis
Resumo:
In this paper, we introduce a Bayesian analysis for survival multivariate data in the presence of a covariate vector and censored observations. Different ""frailties"" or latent variables are considered to capture the correlation among the survival times for the same individual. We assume Weibull or generalized Gamma distributions considering right censored lifetime data. We develop the Bayesian analysis using Markov Chain Monte Carlo (MCMC) methods.
Resumo:
In this paper, we introduce a Bayesian analysis for bioequivalence data assuming multivariate pharmacokinetic measures. With the introduction of correlation parameters between the pharmacokinetic measures or between the random effects in the bioequivalence models, we observe a good improvement in the bioequivalence results. These results are of great practical interest since they can yield higher accuracy and reliability for the bioequivalence tests, usually assumed by regulatory offices. An example is introduced to illustrate the proposed methodology by comparing the usual univariate bioequivalence methods with multivariate bioequivalence. We also consider some usual existing discrimination Bayesian methods to choose the best model to be used in bioequivalence studies.
Resumo:
Point placement strategies aim at mapping data points represented in higher dimensions to bi-dimensional spaces and are frequently used to visualize relationships amongst data instances. They have been valuable tools for analysis and exploration of data sets of various kinds. Many conventional techniques, however, do not behave well when the number of dimensions is high, such as in the case of documents collections. Later approaches handle that shortcoming, but may cause too much clutter to allow flexible exploration to take place. In this work we present a novel hierarchical point placement technique that is capable of dealing with these problems. While good grouping and separation of data with high similarity is maintained without increasing computation cost, its hierarchical structure lends itself both to exploration in various levels of detail and to handling data in subsets, improving analysis capability and also allowing manipulation of larger data sets.
Resumo:
Several popular Machine Learning techniques are originally designed for the solution of two-class problems. However, several classification problems have more than two classes. One approach to deal with multiclass problems using binary classifiers is to decompose the multiclass problem into multiple binary sub-problems disposed in a binary tree. This approach requires a binary partition of the classes for each node of the tree, which defines the tree structure. This paper presents two algorithms to determine the tree structure taking into account information collected from the used dataset. This approach allows the tree structure to be determined automatically for any multiclass dataset.
Resumo:
In this paper we deal with a Bayesian analysis for right-censored survival data suitable for populations with a cure rate. We consider a cure rate model based on the negative binomial distribution, encompassing as a special case the promotion time cure model. Bayesian analysis is based on Markov chain Monte Carlo (MCMC) methods. We also present some discussion on model selection and an illustration with a real dataset.
Resumo:
The multivariate skew-t distribution (J Multivar Anal 79:93-113, 2001; J R Stat Soc, Ser B 65:367-389, 2003; Statistics 37:359-363, 2003) includes the Student t, skew-Cauchy and Cauchy distributions as special cases and the normal and skew-normal ones as limiting cases. In this paper, we explore the use of Markov Chain Monte Carlo (MCMC) methods to develop a Bayesian analysis of repeated measures, pretest/post-test data, under multivariate null intercept measurement error model (J Biopharm Stat 13(4):763-771, 2003) where the random errors and the unobserved value of the covariate (latent variable) follows a Student t and skew-t distribution, respectively. The results and methods are numerically illustrated with an example in the field of dentistry.
Resumo:
The purpose of this paper is to develop a Bayesian approach for log-Birnbaum-Saunders Student-t regression models under right-censored survival data. Markov chain Monte Carlo (MCMC) methods are used to develop a Bayesian procedure for the considered model. In order to attenuate the influence of the outlying observations on the parameter estimates, we present in this paper Birnbaum-Saunders models in which a Student-t distribution is assumed to explain the cumulative damage. Also, some discussions on the model selection to compare the fitted models are given and case deletion influence diagnostics are developed for the joint posterior distribution based on the Kullback-Leibler divergence. The developed procedures are illustrated with a real data set. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Linear mixed models were developed to handle clustered data and have been a topic of increasing interest in statistics for the past 50 years. Generally. the normality (or symmetry) of the random effects is a common assumption in linear mixed models but it may, sometimes, be unrealistic, obscuring important features of among-subjects variation. In this article, we utilize skew-normal/independent distributions as a tool for robust modeling of linear mixed models under a Bayesian paradigm. The skew-normal/independent distributions is an attractive class of asymmetric heavy-tailed distributions that includes the skew-normal distribution, skew-t, skew-slash and the skew-contaminated normal distributions as special cases, providing an appealing robust alternative to the routine use of symmetric distributions in this type of models. The methods developed are illustrated using a real data set from Framingham cholesterol study. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The main goal of this paper is to investigate a cure rate model that comprehends some well-known proposals found in the literature. In our work the number of competing causes of the event of interest follows the negative binomial distribution. The model is conveniently reparametrized through the cured fraction, which is then linked to covariates by means of the logistic link. We explore the use of Markov chain Monte Carlo methods to develop a Bayesian analysis in the proposed model. The procedure is illustrated with a numerical example.
Resumo:
Skew-normal distribution is a class of distributions that includes the normal distributions as a special case. In this paper, we explore the use of Markov Chain Monte Carlo (MCMC) methods to develop a Bayesian analysis in a multivariate, null intercept, measurement error model [R. Aoki, H. Bolfarine, J.A. Achcar, and D. Leao Pinto Jr, Bayesian analysis of a multivariate null intercept error-in -variables regression model, J. Biopharm. Stat. 13(4) (2003b), pp. 763-771] where the unobserved value of the covariate (latent variable) follows a skew-normal distribution. The results and methods are applied to a real dental clinical trial presented in [A. Hadgu and G. Koch, Application of generalized estimating equations to a dental randomized clinical trial, J. Biopharm. Stat. 9 (1999), pp. 161-178].
Resumo:
A continuous version of the hierarchical spherical model at dimension d=4 is investigated. Two limit distributions of the block spin variable X(gamma), normalized with exponents gamma = d + 2 and gamma=d at and above the critical temperature, are established. These results are proven by solving certain evolution equations corresponding to the renormalization group (RG) transformation of the O(N) hierarchical spin model of block size L(d) in the limit L down arrow 1 and N ->infinity. Starting far away from the stationary Gaussian fixed point the trajectories of these dynamical system pass through two different regimes with distinguishable crossover behavior. An interpretation of this trajectories is given by the geometric theory of functions which describe precisely the motion of the Lee-Yang zeroes. The large-N limit of RG transformation with L(d) fixed equal to 2, at the criticality, has recently been investigated in both weak and strong (coupling) regimes by Watanabe (J. Stat. Phys. 115:1669-1713, 2004) . Although our analysis deals only with N = infinity case, it complements various aspects of that work.
Resumo:
In this work, we propose a hierarchical extension of the polygonality index as the means to characterize geographical planar networks. By considering successive neighborhoods around each node, it is possible to obtain more complete information about the spatial order of the network at progressive spatial scales. The potential of the methodology is illustrated with respect to synthetic and real geographical networks.
Resumo:
Hierarchical assemblies of CaMoO4 (CM) nano-octahedrons were obtained by microwave-assisted hydrothemial synthesis at 120 degrees C for different times. These structures were structurally, morphologically and optically characterized by X-ray diffraction, micro-Raman spectroscopy, field-emission gun scanning electron microscopy, ultraviolet-visible absorption spectroscopy and photoluminescence measurements. First-principle calculations have been carried out to understand the structural and electronic order-disorder effects as a function of the particle/region size. Supercells of different dimensions were constructed to simulate the geometric distortions along both they and z planes of the scheelite structure. Based on these experimental results and with the help of detailed structural simulations, we were able to model the nature of the order-disorder in this important class of materials and discuss the consequent implications on its physical properties, in particular, the photoluminescence properties of CM nanocrystals.
Resumo:
Managing software maintenance is rarely a precise task due to uncertainties concerned with resources and services descriptions. Even when a well-established maintenance process is followed, the risk of delaying tasks remains if the new services are not precisely described or when resources change during process execution. Also, the delay of a task at an early process stage may represent a different delay at the end of the process, depending on complexity or services reliability requirements. This paper presents a knowledge-based representation (Bayesian Networks) for maintenance project delays based on specialists experience and a corresponding tool to help in managing software maintenance projects. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Item response theory (IRT) comprises a set of statistical models which are useful in many fields, especially when there is interest in studying latent variables. These latent variables are directly considered in the Item Response Models (IRM) and they are usually called latent traits. A usual assumption for parameter estimation of the IRM, considering one group of examinees, is to assume that the latent traits are random variables which follow a standard normal distribution. However, many works suggest that this assumption does not apply in many cases. Furthermore, when this assumption does not hold, the parameter estimates tend to be biased and misleading inference can be obtained. Therefore, it is important to model the distribution of the latent traits properly. In this paper we present an alternative latent traits modeling based on the so-called skew-normal distribution; see Genton (2004). We used the centred parameterization, which was proposed by Azzalini (1985). This approach ensures the model identifiability as pointed out by Azevedo et al. (2009b). Also, a Metropolis Hastings within Gibbs sampling (MHWGS) algorithm was built for parameter estimation by using an augmented data approach. A simulation study was performed in order to assess the parameter recovery in the proposed model and the estimation method, and the effect of the asymmetry level of the latent traits distribution on the parameter estimation. Also, a comparison of our approach with other estimation methods (which consider the assumption of symmetric normality for the latent traits distribution) was considered. The results indicated that our proposed algorithm recovers properly all parameters. Specifically, the greater the asymmetry level, the better the performance of our approach compared with other approaches, mainly in the presence of small sample sizes (number of examinees). Furthermore, we analyzed a real data set which presents indication of asymmetry concerning the latent traits distribution. The results obtained by using our approach confirmed the presence of strong negative asymmetry of the latent traits distribution. (C) 2010 Elsevier B.V. All rights reserved.