On estimation and influence diagnostics for log-Birnbaum-Saunders Student-t regression models: Full Bayesian analysis
Contribuinte(s) |
UNIVERSIDADE DE SÃO PAULO |
---|---|
Data(s) |
20/10/2012
20/10/2012
2010
|
Resumo |
The purpose of this paper is to develop a Bayesian approach for log-Birnbaum-Saunders Student-t regression models under right-censored survival data. Markov chain Monte Carlo (MCMC) methods are used to develop a Bayesian procedure for the considered model. In order to attenuate the influence of the outlying observations on the parameter estimates, we present in this paper Birnbaum-Saunders models in which a Student-t distribution is assumed to explain the cumulative damage. Also, some discussions on the model selection to compare the fitted models are given and case deletion influence diagnostics are developed for the joint posterior distribution based on the Kullback-Leibler divergence. The developed procedures are illustrated with a real data set. (C) 2010 Elsevier B.V. All rights reserved. FAPESP Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) CNPq Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) |
Identificador |
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, v.140, n.9, p.2486-2496, 2010 0378-3758 http://producao.usp.br/handle/BDPI/28916 10.1016/j.jspi.2010.02.017 |
Idioma(s) |
eng |
Publicador |
ELSEVIER SCIENCE BV |
Relação |
Journal of Statistical Planning and Inference |
Direitos |
restrictedAccess Copyright ELSEVIER SCIENCE BV |
Palavras-Chave | #Generalized Birnbaum-Saunders distribution #Bayesian inference #Bayesian diagnostic measure #Influential observation #Kullback-Leibler divergence #Sinh-normal distribution #Survival analysis #LIFE DISTRIBUTIONS #FAMILY #Statistics & Probability |
Tipo |
article original article publishedVersion |