On estimation and influence diagnostics for log-Birnbaum-Saunders Student-t regression models: Full Bayesian analysis


Autoria(s): CANCHO, Vicente G.; ORTEGA, Edwin M. M.; PAULA, Gilberto A.
Contribuinte(s)

UNIVERSIDADE DE SÃO PAULO

Data(s)

20/10/2012

20/10/2012

2010

Resumo

The purpose of this paper is to develop a Bayesian approach for log-Birnbaum-Saunders Student-t regression models under right-censored survival data. Markov chain Monte Carlo (MCMC) methods are used to develop a Bayesian procedure for the considered model. In order to attenuate the influence of the outlying observations on the parameter estimates, we present in this paper Birnbaum-Saunders models in which a Student-t distribution is assumed to explain the cumulative damage. Also, some discussions on the model selection to compare the fitted models are given and case deletion influence diagnostics are developed for the joint posterior distribution based on the Kullback-Leibler divergence. The developed procedures are illustrated with a real data set. (C) 2010 Elsevier B.V. All rights reserved.

FAPESP

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

CNPq

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Identificador

JOURNAL OF STATISTICAL PLANNING AND INFERENCE, v.140, n.9, p.2486-2496, 2010

0378-3758

http://producao.usp.br/handle/BDPI/28916

10.1016/j.jspi.2010.02.017

http://dx.doi.org/10.1016/j.jspi.2010.02.017

Idioma(s)

eng

Publicador

ELSEVIER SCIENCE BV

Relação

Journal of Statistical Planning and Inference

Direitos

restrictedAccess

Copyright ELSEVIER SCIENCE BV

Palavras-Chave #Generalized Birnbaum-Saunders distribution #Bayesian inference #Bayesian diagnostic measure #Influential observation #Kullback-Leibler divergence #Sinh-normal distribution #Survival analysis #LIFE DISTRIBUTIONS #FAMILY #Statistics & Probability
Tipo

article

original article

publishedVersion