HIERARCHICAL DECOMPOSITION OF MULTICLASS PROBLEMS


Autoria(s): LORENA, Ana C.; CARVALHO, Andre C. P. L. F. de
Contribuinte(s)

UNIVERSIDADE DE SÃO PAULO

Data(s)

20/10/2012

20/10/2012

2008

Resumo

Several popular Machine Learning techniques are originally designed for the solution of two-class problems. However, several classification problems have more than two classes. One approach to deal with multiclass problems using binary classifiers is to decompose the multiclass problem into multiple binary sub-problems disposed in a binary tree. This approach requires a binary partition of the classes for each node of the tree, which defines the tree structure. This paper presents two algorithms to determine the tree structure taking into account information collected from the used dataset. This approach allows the tree structure to be determined automatically for any multiclass dataset.

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

FAPESP

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

CNPq

Identificador

NEURAL NETWORK WORLD, PRAGA, v.18, n.5, p.407-425, 2008

1210-0552

http://producao.usp.br/handle/BDPI/28799

http://apps.isiknowledge.com/InboundService.do?Func=Frame&product=WOS&action=retrieve&SrcApp=EndNote&UT=000260888500005&Init=Yes&SrcAuth=ResearchSoft&mode=FullRecord

Idioma(s)

eng

Publicador

ACAD SCIENCES CZECH REPUBLIC, INST COMPUTER SCIENCE

PRAGA

Relação

Neural Network World

Direitos

closedAccess

Copyright ACAD SCIENCES CZECH REPUBLIC, INST COMPUTER SCIENCE

Palavras-Chave #Classification #multiclass classification problems #hierarchical classification structures #SUPPORT VECTOR MACHINES #CLASSIFICATION #SVM #Computer Science, Artificial Intelligence #Neurosciences
Tipo

article

original article

publishedVersion