A Bayesian Long-term Survival Model Parametrized in the Cured Fraction
Contribuinte(s) |
UNIVERSIDADE DE SÃO PAULO |
---|---|
Data(s) |
20/10/2012
20/10/2012
2009
|
Resumo |
The main goal of this paper is to investigate a cure rate model that comprehends some well-known proposals found in the literature. In our work the number of competing causes of the event of interest follows the negative binomial distribution. The model is conveniently reparametrized through the cured fraction, which is then linked to covariates by means of the logistic link. We explore the use of Markov chain Monte Carlo methods to develop a Bayesian analysis in the proposed model. The procedure is illustrated with a numerical example. CNPq, Brazil[473333/2008-2] Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) |
Identificador |
BIOMETRICAL JOURNAL, v.51, n.3, p.443-455, 2009 0323-3847 http://producao.usp.br/handle/BDPI/28949 10.1002/bimj.200800199 |
Idioma(s) |
eng |
Publicador |
WILEY-V C H VERLAG GMBH |
Relação |
Biometrical Journal |
Direitos |
restrictedAccess Copyright WILEY-V C H VERLAG GMBH |
Palavras-Chave | #Bayesian inference #Cure rate models #Long-term survival models #Negative binomial distribution #Survival analysis #BINOMIAL DISPERSION PARAMETER #Mathematical & Computational Biology #Statistics & Probability |
Tipo |
article original article publishedVersion |