970 resultados para Ge-nanowires
Resumo:
In this work we show dipole-assisted photogated switching by covalent grafting of photoactive molecules to conducting polymers. Photochromic spiropyran molecules were covalently attached to polyaniline (PANI) nanowires via N-alkylation reaction to the quinoic part of PANI. Upon irradiation with ultraviolet light spiropyran transformed to a large dipole containing molecule, merocyanine form. We show that this transformation leads to a substantial (ca. 2 orders of magnitude) increase in conductance of the photochromic PANI nanowires, which were evident by an increase in field-effect mobility and calculated band gap narrowing of the system. Finally, this transformation was found to be fully reversible with no significant photofatigue. © 2011 American Chemical Society.
Resumo:
Optical pump-terahertz probe spectroscopy was used to study the key electronic properties of GaAs, InAs and InP nanowires at room temperature. Of all nanowires studied, InAs nanowires exhibited the highest mobilities of 6000 cm2V-1s-1. InP nanowires featured the longest photoconductivity lifetimes and an exceptionally low surface recombination velocity of 170 cm/s. © 2013 IEEE.
Resumo:
Accurately measuring the electronic properties of nanowires is a crucial step in the development of novel semiconductor nanowire-based devices. With this in mind, optical pump-terahertz probe (OPTP) spectroscopy is ideally suited to studies of nanowires: it provides non-contact measurement of carrier transport and dynamics at room temperature. OPTP spectroscopy has been used to assess key electrical properties, including carrier lifetime and carrier mobility, of GaAs, InAs and InP nanowires. The measurements revealed that InAs nanowires exhibited the highest mobilities and InP nanowires exhibited the lowest surface recombination velocity. © 2013 Copyright SPIE.
Resumo:
The Ni silicide formed at low temperature on Si nanowire has been analyzed by atom probe tomography (APT) thanks to a special technique for sample preparation. A method of preparation has been developed using the focused ion beam (FIB) for the APT analysis of nanowires (NWs). This method allow for the measurement of the radial distribution when a NW is cut, buried in a protective metal matrix, and finally mounted on the APT support post. This method was used for phosphorous doped Si NWs with or without a silicide shell, and allows obtaining the concentration and distribution of chemical elements in three-dimensions (3D) in the radial direction of the NWs. The distribution of atoms in the NWs has been measured including dopants and Au contamination. These measurements show that δ-Ni2Si phase is formed on Si NW, Au is found as cluster at the Ni/δ-Ni2Si interface and P is segregated at the δ-Ni2Si/ Si NW interface. The results obtained on NWs after silicidation were compared with the silicide on the Si substrate, showing that the same silicide phase δ-Ni2Si formed in both cases (NWs and substrate). © 2013 Elsevier B.V. All rights reserved.
Resumo:
Submitted by zhangdi (zhangdi@red.semi.ac.cn) on 2009-04-13T11:45:31Z
Resumo:
Submitted by zhangdi (zhangdi@red.semi.ac.cn) on 2009-04-13T11:45:31Z
Resumo:
Submitted by zhangdi (zhangdi@red.semi.ac.cn) on 2009-04-13T11:45:31Z
Resumo:
Submitted by zhangdi (zhangdi@red.semi.ac.cn) on 2009-04-13T11:45:31Z
Resumo:
Codoping of p-type GaN nanowires with Mg and oxygen was investigated using first-principles calculations. The Mg becomes a deep acceptor in GaN nanowires with high ionization energy due to the quantum confinement. The ionization energy of Mg doped GaN nanowires containing passivated Mg-O complex decreases with increasing the diameter, and reduces to 300 meV as the diameter of the GaN nanowire is larger than 2.01 nm, which indicates that Mg-O codoping is suitable for achieving p-type GaN nanowires with larger diameters. The codoping method to reduce the ionization energy can be effectively used in other semiconductor nanostructures. (C) 2010 American Institute of Physics.
Resumo:
Molecular dynamics simulations with the Tersoff potential were used to study the response of twinned SiC nanowires under tensile and compressive strain. The critical strain of the twinned nanowires can be enhanced by twin stacking faults, and their critical strains are larger than those of perfect nanowires with the same diameters. Under axial tensile strain, the bonds of the nanowires are stretched just before failure. The failure behavior is found to depend on the twin segment thickness and the diameter of the nanowires. An atomic chain is observed for thin nanowires with small twin segment thickness under tension strain. Under axial compressive strain, the collapse of twinned SiC nanowires exhibits two different failure modes, depending on the length and diameter of the nanowires, i.e., shell buckling for short nanowires and columnar buckling for longer nanowires.
Resumo:
Atomic configurations and formation energies of native defects in an unsaturated GaN nanowire grown along the [001] direction and with (100) lateral facets are studied using large-scale ab initio calculation. Cation and anion vacancies, antisites, and interstitials in the neutral charge state are all considered. The configurations of these defects in the core region and outermost surface region of the nanowire are different. The atomic configurations of the defects in the core region are same as those in the bulk GaN, and the formation energy is large. The defects at the surface show different atomic configurations with low formation energy. Starting from a Ga vacancy at the edge of the side plane of the nanowire, a N-N split interstitial is formed after relaxation. As a N site is replaced by a Ga atom in the suboutermost layer, the Ga atom will be expelled out of the outermost layers and leaves a vacancy at the original N site. The Ga interstitial at the outmost surface will diffuse out by interstitialcy mechanism. For all the tested cases N-N split interstitials are easily formed with low formation energy in the nanowires, indicating N-2 molecular will appear in the GaN nanowire, which agrees well with experimental findings.
Resumo:
We report on normal incidence p-i-n heterojunction photodiodes operating in the near-infrared region and realized in pure germanium on planar silicon substrate. The diodes were fabricated by ultrahigh vacuum chemical vapor deposition at 600 degrees C without thermal annealing and allowing the integration with standard silicon processes. Due to the 0.14% residual tensile strain generated by the thermal expansion mismatch between Ge and Si, an efficiency enhancement of nearly 3-fold at 1.55 mu m and the absorption edge shifting to longer wavelength of about 40 nm are achieved in the epitaxial Ge films. The diode with a responsivity of 0.23 A/W at 1.55 mu m wavelength and a bulk dark current density of 10 mA/cm(2) is demonstrated. These diodes with high performances and full compatibility with the CMOS processes enable monolithically integrating microphotonics and microelectronics on the same chip.
Resumo:
Submitted by zhangdi (zhangdi@red.semi.ac.cn) on 2009-06-04T08:36:34Z No. of bitstreams: 1 dspace.cfg: 33388 bytes, checksum: ac9630d3fdb36a155287a049e8b34eb7 (MD5)
Resumo:
Submitted by zhangdi (zhangdi@red.semi.ac.cn) on 2009-06-04T08:36:34Z No. of bitstreams: 1 dspace.cfg: 33388 bytes, checksum: ac9630d3fdb36a155287a049e8b34eb7 (MD5)
Resumo:
A flat, fully strain-relaxed Si0.72Ge0.28 thin film was grown on Si (1 0 0) substrate with a combination of thin low-temperature (LT) Ge and LT-Si0.72Ge0.28 buffer layers by ultrahigh vacuum chemical vapor deposition. The strain relaxation ratio in the Si0.72Ge0.28 film was enhanced up to 99% with the assistance of three-dimensional Ge islands and point defects introduced in the layers, which furthermore facilitated an ultra-low threading dislocation density of 5 x 10(4) cm (2) for the top SiGe film. More interestingly, no cross-hatch pattern was observed on the SiGe surface and the surface root-mean-square roughness was less than 2 nm. The temperature for the growth of LT-Ge layer was optimized to be 300 degrees C. (C) 2008 Elsevier B.V. All rights reserved.