995 resultados para Löw <Rabbi>Löw <Rabbi>
Resumo:
Morphology of self-assembled GeSi quantum dot grown on Si(113) by Si molecular beam epitaxy has been studied by transmission electron microscopy and atomic force microscopy. Photoluminescence from the as-grown sample and annealed sample was studied. The results were analyzed and explained.
Resumo:
We report experiments on hot-electron stressing in commercial III-V nitride based heterojunction fight-emitting diodes. Stressing currents ranging from 100 mA to 200 mA were used. Degradations in the device properties were investigated through detailed studies of the I-V characteristics, electroluminescence, Deep-Level Transient Fourier Spectroscopy and flicker noise. Our experimental data demonstrated significant distortions in the I-V characteristics. The room temperature electroluminescence of the devices exhibited 25% decrement in the peak emission intensity. Concentration of the deep-levels was examined by measuring the Deep-Level Transient Fourier Spectroscopy, which indicated an increase in the density of deep-traps from 2.7 x 10(13) cm(-3) to 4.21 x 10(13) cm(-3) at E-1 = E-C - 1.1eV. The result is consistent with our study of 1/f noise, which exhibited up to three orders of magnitude increase in the voltage noise power spectra. Our experiments show large increase in both the interface traps and deep-levels resulted from hot-carrier stressing.
Resumo:
When liquid phase epitaxy regrowth at 780 degrees C for 2 h is applied to the samples after molecular beam epitaxy, a decrease of the threshold current density in strained InGaAs/GaAs quantum well lasers by a factor of 3 to 4 is obtained. We suggest that this improvement is attributed to the reduction of nonradiative centers associated with deep levels at the three regions of the active region, the graded layer and the cladding layer. Indeed, a significant reduction of deep center densities has been observed by using minority and majority carrier injection deep level transient spectroscopy measurements. (C) 1998 Elsevier Science B.V. All rights reserved.
Resumo:
The conduction-band offset Delta E-C has been determined for a molecular beam epitaxy grown GaAs/In0.2Ga0.8As single quantum-well structure, by measuring the capacitance-voltage (C - V) profiling, taking into account a correction for the interface charge density, and the capacitance transient resulting from thermal emission of carriers from the quantum well, respectively. We found that Delta E-C = 0.227 eV, corresponding to about 89% Delta E-g, from the C - V profiling; and Delta E-C = 0.229eV, corresponding to about 89.9% Delta E-g, from the deep-level transient spectroscopy (DLTS) technique. The results suggest that the conduction-band discontinuity Delta E-C obtained from the C-V profiling is in good agreement with that obtained from the DLTS technique. (C) 1998 American Institute of Physics.
Resumo:
We studied the dependence of photoluminescence induced by carbon contamination on the Ge/GeSi structure. It is found that a carbon and silicon defect complex may be formed in a special structure by opening the in situ high-energy electron diffraction test during growth. There is an important difference in the dependence of photoluminescence on the temperature between the defect complex in our samples and in bulk Si. where the impurity-active center is generated by high-energy electron (about several MeV) irradiation. The quenching temperature of the photoluminescence from the impurity-active center is higher in our Ge/GeSi structure than in bulk Si. The defect complex may serve as an impurity-active center for a possible application in making Si-based light-emitting diodes whose wavelength is around 1.3 mu m in the window of optical communication. (C) 1998 Elsevier Science B.V. All rights reserved.
Resumo:
A photovoltaic quantum dot infrared photodetector with InAs/GaAs/AlGaAs structures is reported. The detector is sensitive to normal incident light. At zero bias and 78 K, a clear spectral response in the range of 2 -7 mu m has been obtained with peaks at 3.1, 4.8 and 5.7 mu m. The bandgap energies of GaAs and Al0.2Ga0.8As at 78K are calculated and the energy diagram of the transitions in the Quantum-Dot Infrared Photodetector (QDIP) is given out. The photocurrent signals can be detected up to 110 K, which is state-of-the-art for photovoltaic QDIP. The photovoltaic effect in our detector is a result of the enhanced band asymmetry as we design in the structure.
Resumo:
软件通信体系结构(SoftwareCommunicationsArchitecture,简称SCA)已被软件无线电(SoftwareDefinedRadio,简称SDR)论坛采纳为嵌入式系统的标准通信软件结构。SCA提供了一种支持通信软件和硬件可移植、可配置、可扩充和可重用的软件平台,但作为构件框架时仍显不足,主要是缺乏明确的构件模型。在研究CORBA构件模型(CORBAComponentModel,简称CCM)基础上,提出了适用于SCA的轻量级(Lightweight,简称Lw)CORBA构件模型———LwCCM。
Resumo:
For large size- and chemical-mismatched isovalent semiconductor alloys, such as N and Bi substitution on As sites in GaAs, isovalent defect levels or defect bands are introduced. The evolution of the defect states as a function of the alloy concentration is usually described by the popular phenomenological band anticrossing (BAC) model. Using first-principles band-structure calculations we show that at the impurity limit the N-(Bi)-induced impurity level is above (below) the conduction- (valence-) band edge of GaAs. These trends reverse at high concentration, i.e., the conduction-band edge of GaAs1-xNx becomes an N-derived state and the valence-band edge of GaAs1-xBix becomes a Bi-derived state, as expected from their band characters. We show that this band crossing phenomenon cannot be described by the popular BAC model but can be naturally explained by a simple band broadening picture.
Resumo:
Using deep level transient spectroscopy (DLTS) the conduction-subband energy levels in a V-shaped potential well induced by Si-delta doping in GaAs were determined. Self-consistent calculation gives four subbands in the well below the Fermi level. Experimentally, two DLTS peaks due to electron emission from these subbands were observed. Another two subbands with low electron concentration are believed to be merged into the adjacent DLTS peak. A good agreement between self-consistent calculation and experiment was obtained. (C) 1994 American Institute of Physics.
Resumo:
Electrical measurements were combined with surface techniques to study the Pt/Si interfaces at various silicide formation temperatures. Effects of deep centers on the Schottky barrier heights were studied. Hydrogen plasma treatment was used to passivate the impurity/defect centers at the interfaces, and the effects of hydrogenation on the Schottky barrier heights were also examined. Combining our previous study on the Pt/Si interfacial reaction, factors influencing the PtSi/Si Schottky barrier diode are discussed.
Resumo:
Two thermostable levels E(0.31) and E(0.58) related to Rh in Si were observed using deep level transient spectroscopy and double correlation deep level transient spectroscopy techniques. By means of thermal annealing and electron irradiation, the microscopic natures of these levels were identified for the first time. The levels E(0.31) and E(0.58) arise from by the same impurity center but have different charge states. Their microstructures are not related to a pure substitutional Rh atom, but correspond to a complex. This result is compared to our self-consistent theoretical calculation.
Resumo:
We report the physical behavior of Ru atom in silicon in this paper. Two energy levels E(0.58) and H(0.34) were observed. The pure substitutional Ru in silicon was responsible for the H(0.34), and the E(0.58) was introduced by a complex of a Ru atom and a vacancy (or vacancies). By use of scattered wave-X-alpha (SW-X-alpha) cluster method the theoretical calculation of electronic states for substitutional Ru atom in silicon has been performed. The results obtained were compared with those of experimental measurements.
Resumo:
Capacitance-voltage, photoluminescence (PL), and deep level transient spectroscopy techniques were used to investigate deep electron states in n-type Al-doped ZnS1-xTex epilayers grown by molecular beam epitaxy. The integrated intensity of the PL spectra obtained from Al-doped ZnS0.977Te0.023 is lower than that of undoped ZnS0.977Te0.023, indicating that some of the Al atoms form nonradiative deep traps. Deep level transient Fourier spectroscopy (DLTFS) spectra of the Al-doped ZnS1-xTex (x=0, 0.017, 0.04, and 0.046, respectively) epilayers reveal that Al doping leads to the formation of two electron traps 0.21 and 0.39 eV below the conduction band. DLTFS results suggest that in addition to the roles of Te as a component of the alloy as well as isoelectronic centers, Te is also involved in the formation of an electron trap, whose energy level with respect to the conduction band decreases as Te composition increases. Our results show that only a small fraction of Al atoms forms nonradiative deep defects, indicating clearly that Al is indeed a very good donor impurity for ZnS1-xTex epilayers in the range of Te composition being studied in this work. (C) 1997 American Institute of Physics. [S0021-8979(97)08421-1].