489 resultados para SAPPHIRE
Resumo:
High resistivity unintentionally doped GaN films were grown on (0001) sapphire substrates by metalorganic chemical vapor deposition. The surface morphology of the layer was measured by both atomic force microscopy and scanning electron microscopy. The results show that the films have mirror-like surface morphology with root mean square of 0.3 nm. The full width at half maximum of double crystal X-ray diffraction rocking curve for (0002) GaN is about 5.22 arc-min, indicative of high crystal quality. The resistivity of the GaN epilayers at room temperature and at 250 degrees C was measured to be approximate 10(9) and 10(6) Omega(.)cm respectively, by variable temperature Hall measurement. Deep level traps in the GaN epilayers were investigated by thermally stimulated current and resistivity measurements.
Resumo:
InGaN/GaN heterostructures have been deposited onto (0 0 0 1) sapphire by our home-made low pressure MOVPE with different growth parameters. It has been noted that the indium incorporation depends by a complex way on a number of factors. In this work, the effect of substrate temperature, trimethylindium input flow and V/III ratio on the indium incorporation has been investigated. Finally, by optimizing the growth parameters, we made a series of single-phase InGaN samples with indium content from 10% up to 45%.
Resumo:
The semiconductor-metal transition of vanadium dioxide (VO2) thin films epitaxially grown on C-plane sapphire is studied by depositing Au nanoparticles onto the thermochromic films forming a metal-semiconductor contact, namely, a nano-Au-VO2 junction. It reveals that Au nanoparticles have a marked effect on the reduction in the phase transition temperature of VO2. A process of electron injection in which electrons flow from Au to VO2 due to the lower work function of the metal is believed to be the mechanism. The result may support the Mott-Hubbard phase transition model for VO2.
Resumo:
Experimental investigations of nondegenerate ultrabroadband chirped pulse optical parametric amplification have been carried out. The general mathematical expressions for evaluating parametric bandwidth, gain and gain bandwidth for arbitrary three-wave mixing parametric amplifiers are presented. In our experiments, a type-I noncollinear phase-matched optical parametric amplifier based on lithium triborate, which was pumped by a 5-ns second harmonic pulses from a Q-switched Nd:YAG operating at 10 Hz, seeded by a 14-fs Ti:sapphire laser at 800 nm, was presented. The 0.85 nJ energy of input chirped signal pulse with 57-FWHM has been amplified to 3.1 muJ at pump intensity 3 GW/cm(2), the corresponding parametric gain reached 3.6 x 10(3), the 53 nm-FWHM gain spectrum bandwidth of output signal has been obtained. The large gain and broad gain bandwidth, which have been confirmed experimentally, provide great potentials to amplify efficiently the broad bandwidth femtosecond light pulses to generate new extremes in power, intensity, and pulse duration using optical parametric chirped pulse amplifiers pumped by powerful nanosecond systems.
Resumo:
The analysis and calculation of the compensation for the phase mismatch of the frequency-doubling using the frequency space chirp introduced from prisms are made. The result shows that suitable lens can compensate the phase mismatch in a certain extent resulting from wide femtosecond spectrum when the spectrum is space chirped. By means of this method, the experiment of second harmonic generation is carried out using a home-made femtosecond KLM Ti:sapphire laser and BBO crystal. The conversion efficiency of SHG is 63 %. The average output power of blue light is 320 mW. The central wavelength is 420 nm. The spectrum bandwidth is 5.5 nm. It can sustain the pulse width of 33.6 fs. The tuning range of blue light is 404-420 nm,when the femtosecond Ti:sapphire optical pulse is tuned using the prisms in the cavity.
Resumo:
In this paper, we investigate the mechanism of tunable parametric superfluorescence (PS) based on the second harmonic generation and parametric processes taking place in the same nonlinear crystal (BBO). The tunable spectra of PS has been generated between 480 nm and 530 nm, which is pumped by the second-harmonic from the high-power Ti: sapphire laser system at 1 kHz repetition rate. We present the generation mechanism of PS theoretically and simulate the process of PS ring using the amplification transfer function. The experiment and the theory show that PS will appear when the phase matching angle for second-harmonic generation is close to the optimal pump angle for optical parametric generation, and then the tunable spectra of PS are generated by slightly adjusting the crystal angle. The result provides a theoretical basis for controlling the generation of PS and quantum entanglement states, which is of great significance for the development of quantum imaging, quantum communications and other applieations.
Resumo:
The Mass Analyzed Low Energy Dual Ion Beam Epitaxy (MALE-DIBE) system has been designed and constructed in our laboratory. We believe that the system, which was installed and came into full operation in 1988, is the first facility of this kind. With our system we have carried out studies, for the first time, on compound synthesis of GaN and CoSi2 epitaxial thin films. RHEED and AES results show that GaN films, which were deposited on Si and sapphire substrates, are monocrystalline and of good stoichiometry. To our knowledge, GaN film heteroepitaxially grown on Si. which is more lattice-mismatched than GaN on sapphire, has not been reported before by other authors. RBS and TEM investigations indicated a rather good crystallinity of CoSi2 with a distinct interface between CoSi2 and the Si substrate. The channelling minimum yield chi(min) from the Co profile is approximately 4%. The results showed that the DIBE system with simultaneous arrival of two beams at the target is particularly useful in the formation of novel compounds at a relatively low substrate temperature.
Resumo:
Single-crystal GaN films have been deposited on (01 (1) over bar 2) sapphire substrates using trimethylgallium (TMGa) and NH3 as sources. The morphological, crystalline, electrical and optical characterizations of GaN film are investigated. The carrier concentration ofundoped GaN increases with decreasing input NH3-to-TMGa molar flow ratio.
Resumo:
We propose and fabricate an A1GaN/GaN high electron mobility transistor (HEMT) on sapphire substrate using a new kind of electron beam (EB) lithography layout for the T-gate. Using this new layout,we can change the aspect ratio (ratio of top gate dimension to gate length) and modify the shape of the T-gate freely. Therefore, we obtain a 0.18μm gate-length AlGaN/GaN HEMT with a unity current gain cutoff frequency (f_T) of 65GHz. The aspect ratio of the T-gate is 10. These single finger devices also exhibit a peak extrinsic transconductance of 287mS/mm and a maximum drain current as high as 980mA/mm.
Resumo:
High-resolution X-ray diffraction has been employed to investigate the diffuse scattering in a (0001) oriented GaN epitaxial film grown on sapphire substrate. The analysis reveals that defect clusters are present in GaN films and their concentration increases as the density of threading dislocations increases. Meanwhile, the mean radius of these defect clusters shows a reverse tendency. This result is explained by the effect of clusters preferentially forming around dislocations, which act as effective sinks for the segregation of point defects. The electric mobility is found to decrease as the cluster concentration increases.
Resumo:
Thick GaN films were grown on GaN/sapphire template in a vertical HVPE reactor. Various material characterization techniques,including AFM, SEM, XRD, RBS/Channeling, CL, PL, and XPS, were used to characterize these GaN epitaxial films. It was found that stepped/terraced structures appeared on the film surface,which were indicative of a nearly step-flow mode of growth for the HVPE GaN despite the high growth rate. A few hexagonal pits appeared on the surface, which have strong light emission. After being etched in molten KOH, the wavy steps disappeared and hexagonal pits with {1010} facets appeared on the surface. An EPD of only 8 ×10~6cm~(-2) shows that the GaN film has few dislocations. Both XRD and RBS channeling indicate the high quality of the GaN thick films. Sharp band-edge emission with a full width at half maximum(FWHM)of 67meV was observed, while the yellow and infrared emissions were also found. These emissions are likely caused by native defects and C and O impurities.
Resumo:
Time-dependent thermal simulation of ridge-geometry InGaN laser diodes is carried out with a two-dimensional model. A high temperature in the waveguide layer and a large temperature step between the regions under and outside the ridge are generated due to the poor thermal conductivity of the sapphire substrate and the large threshold current and voltage. The temperature step is thought to have a strong influence on the characteristics of the laser diodes. Time-resolved measurements of light-current curves,spectra, and the far-field pattern of the InGaN laser diodes under pulsed operation are performed. The results show that the thermal lensing effect improves the confinement of the higher order modes and leads to a lower threshold current and a higher slope efficiency of the device while the high temperature in the active layer results in a drastic decrease in the slope efficiency.
Resumo:
A Si doped AlGaN/GaN HEMT structure with high Al content (x= 44%) in the barrier layer is grown on sapphire substrate by RF-MBE. The structural and electrical properties of the heterostructure are investigated by the triple axis X-ray diffraction and Van der Pauw-Hall measurement, respectively. The observed prominent Bragg peaks of the GaN and AlGaN and the Hall results show that the structure is of high quality with smooth interface.fabricated and characterized. Better DC characteristics, maximum drain current of 1.0A/mm and extrinsic transconductance of 218mS/mm are obtained when compared with HEMTs fabricated using structures with lower Al mole fraction in the AlGaN barrier layer. The results suggest that the high Al content in the AlGaN barrier layer is promising in improving material electrical properties and device performance.
Resumo:
Two quaternary InAlGaN films were grown by metal-organic chemical-vapor deposition (MOCVD) on sapphire (0001) substrates with and without high-temperature GaN interlayer, respectively. The structural and optical properties of the quaternary films were investigated by high-resolution X-ray diffraction (HRXRD), high-resolution electron microscopy (HREM), temperature-dependent photoluminescence (PL) spectroscopy and time-resolved photoluminescence (TRPL) spectroscopy. According to the HRXRD and PL results, it is demonstrated that two samples have the same crystal quality. The TRPL signals of both samples were fitted well as a stretched exponential decay from 14 K to 250 K, indicating significant disorder in the materials, which is attributed to recombination of excitons localized in disorder quantum nanostructures such as quantum dots or quantum disks originating from indium (In) clusters or In composition fluctuation. The cross-section HREM measurement further proves that there exist disorder quantum nanostructures in the quaternary. By investigating the temperature dependence of the dispersive exponent beta, it is shown that the stretched exponential decays of the two samples originate from different mechanisms. (C) 2003 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
Photoluminescence (PL) and temperature-dependent Hall effect measurements were carried out in (0001) and (11 (2) over bar0) AlGaN/GaN heterostructures grown on sapphire substrates by metalorganic chemical vapor deposition. There are strong spontaneous and piezoelectric electric fields (SPF) along the growth orientation of the (0001) AlGaN/GaN heterostructures. At the same time there are no corresponding SPF along that of the (1120) AlGaN/GaN. A strong PL peak related to the recombination between two-dimensional electron gas (2DEG) and photoexcited holes was observed at 3.258 eV at room temperature in (0001) AlGaN/GaN heterointerfaces while no corresponding PL peak was observed in (11 (2) over bar0). The existence of a 2DEG was observed in (0001) AlGaN/GaN multi-layers with a mobility saturated at 6000 cm(2)/V s below 80 K, whereas a much lower mobility was measured in (11 (2) over bar0). These results indicated that the SPF was the main element to cause the high mobility and high sheet-electron-density 2DEG in AlGaN/GaN heterostructures. (C) 2004 Elsevier B.V. All rights reserved.