944 resultados para Q-Oscillator Algebra
Resumo:
A diode-pumped passively Q-switched mode-locked (QML) Nd:GdVO4 laser with a low temperature GaAs (LT-GaAs) saturable absorber is presented. The maximal Q-switched mode-locked average output power was 798 mW with the Q-switched envelop having a repetition rate of 125 kHz. The mode-locked pulse trains inside the Q-switched pulse envelope had a repetition rate of similar to 750 MHz. The laser properties of the operational parameters on the pump power were also investigated experimentally.
Resumo:
We present a generation condition for realizing high-Q TM whispering-gallery modes (WGMs) in semiconductor microcylinders. For microcylinders with symmetry or weak asymmetry vertical waveguiding, we show that TM WGMs can have a high Q factor, with the magnitude of 10(4) at the radius of the microcylinder of 1 mu m, by three-dimensional numerical simulation. The Q factor of TE WGMs is much less than that of TM WGMs in the semiconductor microcylinders due to a vertical radiation loss caused by mode coupling with the vertical propagating mode. The results open up a possible application of TM WGMs in semiconductor microcylinders for efficient current injection microlasers and single photon sources.
Resumo:
By using a composite semiconductor absorber and an output coupler, we demonstrated a Q-switched and mode-locked diode-pumped microchip Nd:YVO4 laser. With a 350-mu m-thick crystal, the width of the Q-switched envelope was as short as 12 ns; the repetition rate of the mode-locked pulses inside the Q-switched pulse was more than 10 GHz. The average output power was 335 mW at a maximum pump power of 1.6 W. Q-switched envelope widths of 21 and 31 ns were also achieved with crystals 0.7 and 1.0 mm thick, respectively.
Resumo:
We report, for the first time to the best of our knowledge, on a passively Q-switched Nd:YVO4 laser with a GaAs absorber grown at low temperature (LT) by metal organic vapor phase expitaxy. Using the LT GaAs absorber as well as an output coupler, a passively Q-switched laser whose pulse duration is as short as 90 ns, was obtained.
Resumo:
A diode-pumped Nd:YVO4 laser passively Q switched by a semiconductor absorber is demonstrated. The Q-switched operation of the laser has an average output power of 135 mW with a 1.6 W incident pump power. The minimum pulse width is measured to be about 8.3 ns with a repetition rate of 2 MHz. To our knowledge, this is the first demonstration of a solid-state laser passively Q-switched by such a composite semiconductor absorber. (c) 2006 Optical Society of America.
Resumo:
Low temperature GaAs (LT-GaAs) was successfully grown at the temperature of 550 degrees C by metal organic vapor phase epitaxy on a semi-insular GaAs substrate. With such an absorber as well as an output coupler we obtain Q-switched mode-locked (QML) 1064 nm Nd:GdVO4 laser pumped by diode laser with high repetition rate, formed with a simple flat-flat cavity. The repetition rate of the Q-switched envelope increased from 100 to 660 kHz as the pump power increased from 2.28 to 7.29 W. The mode-locked pulses inside the Q-switched pulse envelope had a repetition rate of similar to 1.36 GHz. A maximum average output power of 953 mW was obtained. The dependence of the operational parameters on the pump power was also investigated experimentally. (C) 2005 Elsevier B.V. All rights reserved.
Resumo:
We have demonstrated an efficient and compact passively Q-switched and mode-locked (QML) 1064 nm Nd:YVO4 laser by using a low temperature grown GaAs (LT-GaAs) saturable absorber as well as an output coupler. Stable QML with envelope duration as short as 10 ns and Q-switched repetition rate of 36 kHz was obtained. It is the shortest envelope duration as far as we know, and it is so short that it can be used as Q-switching pulses directly. At 6.9 W of the incident pump power, average output power of 1.24 W was achieved and the corresponding peak power and energy of a single Q-switched pulse were 3.44 kW and 34.4 mu J, respectively. The mode-locked pulses inside the Q-switched pulse envelope had a repetition rate of 780 MHz. (C) 2005 Elsevier B.V. All rights reserved.
Resumo:
Simultaneous Q-switching and mode-locking (QML) is accomplished in a diode-pumped Nd:YAG laser using low-temperature GaAs (LT-GaAs) as the saturable absorber, which also acts as an output coupler at the same time. The repetition rate of the Q-switched envelope increased from 25 to 40 kHz as the pump power increased from 2.2 to 6.9 W. The mode-locked pulses inside the Q-switched pulse envelope had a repetition rate of 714 MHz. A maximum average output power of 770 mW was obtained. (c) 2005 Elsevier GmbH. All rights reserved.
Resumo:
A passively Q-switched Yb: YAG microchip laser has been constructed by using a doped GaAs as the saturable absorber as well as the output coupler. At 13.5 W of pump power the device produces high-quality 3.4 muJ 52 ns pulses at 1030nm with a pulse repetition rate of 7.8kHz in a TEM00-mode.
Resumo:
We have investigated the mode characteristics for three-dimensional (3D) semiconductor microresonators by finite-difference time-domain (FDTD) technique. The results show that the quality-factors (Q-factors) of TM-like modes are much larger than those of TE-like modes as the vertical waveguidng formed by semiconductor materials.
Resumo:
A high quality (Q) factor microring resonator in silicon-on-insulator rib waveguides was fabricated by electron beam lithography, followed by inductively coupled plasma etching. The waveguide dimensions were scaled down to submicron, for a low bending loss and compactness. Experimentally, the resonator has been realized with a quality factor as high as 21,200, as well as a large extinction ratio 12.5dB at telecommunication wavelength near 1550nm. From the measured results, propagation loss in the rib waveguide is determined as low as 6.900/cm. This high Q microring resonator is expected to lead to high speed optical modulators and bio-sensing devices.
Resumo:
Submitted by 阎军 (yanj@red.semi.ac.cn) on 2010-06-04T08:08:51Z No. of bitstreams: 1 High-Q and High-extinction-ratio Microdisk Add-drop Filter with Grating Couplers in Silicon-on-Insulator.pdf: 662474 bytes, checksum: dbdd3fba410c875bd74a6d4823930a44 (MD5)
Resumo:
We report a period continuously tunable, efficient, mid-infrared optical parametric oscillator (OPO) based on a fan-out periodically poled MgO-doped congruent lithium niobate (PPMgLN). The OPO is pumped by a Nd:YAG laser and a maximum idler output average power of 1.65 W at 3.93 mu m is obtained with a pump average power of 10.5 W, corresponding to the conversion efficiency of about 16% from the pump to the idler. The output spectral properties of the OPO with the fan-out crystal are analyzed. The OPO is continuously tuned over 3.78-4.58 mu m (idler) when fan-out periods are changed from 27.0 to 29.4 mu m. Compared with temperature tuning, fan-out period continuous tuning has faster tuning rate and wider tuning range.
Resumo:
High efficiency, TEM00 mode, high repetition rate laser pumped by 887 nm is reported. 20.1 W output laser emitting at 1064 nm is achieved in a 0.3 at % Nd-doped Nd:YVO4, which absorbs pumping light of 30.7 W at 887 nm. The opto-optic efficiency and the slope efficiency are 65.5 and 88.5%, respectively. The stable Q-switching operation worked well at 100 kHz and the beam quality is near diffraction-limit with M-2 factor measured as M-2 approximate to 1.2. And the pulse waveform is analyzed in this paper.
Resumo:
We report a LD side-pumped fundamental-mode (Mx(2) = 1.35 and My(2) = 1.27) passive Q-switched and mode-locked Nd:YAG laser based on a semiconductor saturable absorber mirror (SESAM). At a pump current of 12.5 A, the average output power of 5.68 W with 80 kHz repetition rate and 2 mu s pulse width of the Q-switched envelope was generated. The repetition rate of the mode-locked pulse within the Q-switched envelope of 88 MHz was achieved.