873 resultados para polarization orientation
Resumo:
Food safety management systems (FSMSs) and the scrutinisation of the food safety practices that are intended for adoption on the firm level both offer strategic value to the dried fig sector. This study aims to prove the hypothesis that export orientation is a major motivating force for the adoption of food safety systems in the Turkish dried fig firms. Data were obtained from 91 dried fig firms located in Aydin, Turkey. Interviews were carried out with firms’ managers/owners using a face-to-face questionnaire designed from May to August of 2010. While 36.3 percent of the interviewed firms had adopted one or more systems, the rest had no certification. A binomial logistic econometric model was employed. The parameters that influenced this decision included contractual agreements with other firms, implementation of good practices by the dried fig farmers, export orientation and cost-benefit ratio. Interestingly, the rest of the indicators employed had no statistically significant effect on adoption behaviour. This paper focusses on the export orientation parameter directly in order to test the validity of the main research hypothesis. The estimated marginal effect suggests that when dried fig firms are export-oriented, the probability that these firms will adopt food safety systems goes up by 39.5 percent. This rate was the first range observed among all the marginal probability values obtained and thus verified the hypothesis that export orientation is a major motivator for the adoption of food safety systems in the Turkish dried fig firms.
Resumo:
Trade rules are suggested to be one of the reasons for the hunger in the world and environmental damage. As current trade rules encourage market orientation and therefore specialization and industrialization of agriculture, which has as side effects rural hunger and environmental damage, there is room for improvement in the international trade regime. One main finding of Nexus Foundations' work in Geneva is a possible new orientation for agricultural and food markets – an orientation on development, rather than purely on markets. This development orientation consists of several elements from development of soil fertility to local markets and consumer relatedness. Since the Bali Ministerial in 2013, the WTO has set up a four year work programme on the issue of food security related to food reserves. This opens the chance to discuss broader food security issues in the realm of trade negotiations.
Resumo:
The magnetic properties and interactions between transition metal (TM) impurities and clusters in low-dimensional metallic hosts are studied using a first principles theoretical method. In the first part of this work, the effect of magnetic order in 3d-5d systems is addressed from the perspective of its influence on the enhancement of the magnetic anisotropy energy (MAE). In the second part, the possibility of using external electric fields (EFs) to control the magnetic properties and interactions between nanoparticles deposited at noble metal surfaces is investigated. The influence of 3d composition and magnetic order on the spin polarization of the substrate and its consequences on the MAE are analyzed for the case of 3d impurities in one- and two-dimensional polarizable hosts. It is shown that the MAE and easy- axis of monoatomic free standing 3d-Pt wires is mainly determined by the atomic spin-orbit (SO) coupling contributions. The competition between ferromagnetic (FM) and antiferromagnetic (AF) order in FePtn wires is studied in detail for n=1-4 as a function of the relative position between Fe atoms. Our results show an oscillatory behavior of the magnetic polarization of Pt atoms as a function of their distance from the magnetic impurities, which can be correlated to a long-ranged magnetic coupling of the Fe atoms. Exceptionally large variations of the induced spin and orbital moments at the Pt atoms are found as a function of concentration and magnetic order. Along with a violation of the third Hund’s rule at the Fe sites, these variations result in a non trivial behavior of the MAE. In the case of TM impurities and dimers at the Cu(111), the effects of surface charging and applied EFs on the magnetic properties and substrate-mediated magnetic interactions have been investigated. The modifications of the surface electronic structure, impurity local moments and magnetic exchange coupling as a result of the EF-induced metallic screening and charge rearrangements are analysed. In a first study, the properties of surface substitutional Co and Fe impurities are investigated as a function of the external charge per surface atom q. At large inter-impurity distances the effective magnetic exchange coupling ∆E between impurities shows RKKY-like oscillations as a function of the distance which are not significantly affected by the considered values of q. For distances r < 10 Å, important modifications in the magnitude of ∆E, involving changes from FM to AF coupling, are found depending non-monotonously on the value and polarity of q. The interaction energies are analysed from a local perspective. In a second study, the interplay between external EF effects, internal magnetic order and substrate-mediated magnetic coupling has been investigated for Mn dimers on Cu(111). Our calculations show that EF (∼ 1eV/Å) can induce a switching from AF to FM ground-state magnetic order within single Mn dimers. The relative coupling between a pair of dimers also shows RKKY-like oscillations as a function of the inter-dimer distance. Their effective magnetic exchange interaction is found to depend significantly on the magnetic order within the Mn dimers and on their relative orientation on the surface. The dependence of the substrate-mediated interaction on the magnetic state of the dimers is qualitatively explained in terms of the differences in the scattering of surface electrons. At short inter-dimer distances, the ground-state configuration is determined by an interplay between exchange interactions and EF effects. These results demonstrate that external surface charging and applied EFs offer remarkable possibilities of manipulating the sign and strength of the magnetic coupling of surface supported nanoparticles.
Resumo:
The question of how shape is represented is of central interest to understanding visual processing in cortex. While tuning properties of the cells in early part of the ventral visual stream, thought to be responsible for object recognition in the primate, are comparatively well understood, several different theories have been proposed regarding tuning in higher visual areas, such as V4. We used the model of object recognition in cortex presented by Riesenhuber and Poggio (1999), where more complex shape tuning in higher layers is the result of combining afferent inputs tuned to simpler features, and compared the tuning properties of model units in intermediate layers to those of V4 neurons from the literature. In particular, we investigated the issue of shape representation in visual area V1 and V4 using oriented bars and various types of gratings (polar, hyperbolic, and Cartesian), as used in several physiology experiments. Our computational model was able to reproduce several physiological findings, such as the broadening distribution of the orientation bandwidths and the emergence of a bias toward non-Cartesian stimuli. Interestingly, the simulation results suggest that some V4 neurons receive input from afferents with spatially separated receptive fields, leading to experimentally testable predictions. However, the simulations also show that the stimulus set of Cartesian and non-Cartesian gratings is not sufficiently complex to probe shape tuning in higher areas, necessitating the use of more complex stimulus sets.
Resumo:
Resumen tomado de la publicaci??n
Resumo:
Resumen tomado de la publicaci??n. Resumen tambi??n en ingl??s
Resumo:
Resumen tomado de la publicaci??n. Resumen tambi??n en ingl??s
Resumo:
notes and slides to guide preparation for stage test
Resumo:
Resumen basado en el que aparece en la revista. Resumen en francés y castellano
Resumo:
Resumen tomado de la publicación. Con el apoyo económico del departamento MIDE de la UNED. Incluye anexos
Resumo:
Resumen tomado de la publicación
Resumo:
Resumen basado en el de la publicaci??n
Resumo:
Resumen tomado de la publicaci??n
Resumo:
To obtain a state-of-the-art benchmark potential energy surface (PES) for the archetypal oxidative addition of the methane C-H bond to the palladium atom, we have explored this PES using a hierarchical series of ab initio methods (Hartree-Fock, second-order Møller-Plesset perturbation theory, fourth-order Møller-Plesset perturbation theory with single, double and quadruple excitations, coupled cluster theory with single and double excitations (CCSD), and with triple excitations treated perturbatively [CCSD(T)]) and hybrid density functional theory using the B3LYP functional, in combination with a hierarchical series of ten Gaussian-type basis sets, up to g polarization. Relativistic effects are taken into account either through a relativistic effective core potential for palladium or through a full four-component all-electron approach. Counterpoise corrected relative energies of stationary points are converged to within 0.1-0.2 kcal/mol as a function of the basis-set size. Our best estimate of kinetic and thermodynamic parameters is -8.1 (-8.3) kcal/mol for the formation of the reactant complex, 5.8 (3.1) kcal/mol for the activation energy relative to the separate reactants, and 0.8 (-1.2) kcal/mol for the reaction energy (zero-point vibrational energy-corrected values in parentheses). This agrees well with available experimental data. Our work highlights the importance of sufficient higher angular momentum polarization functions, f and g, for correctly describing metal-d-electron correlation and, thus, for obtaining reliable relative energies. We show that standard basis sets, such as LANL2DZ+ 1f for palladium, are not sufficiently polarized for this purpose and lead to erroneous CCSD(T) results. B3LYP is associated with smaller basis set superposition errors and shows faster convergence with basis-set size but yields relative energies (in particular, a reaction barrier) that are ca. 3.5 kcal/mol higher than the corresponding CCSD(T) values
Resumo:
The male and female homosexual orientation has substantial prevalence in humans and can be explained by determinants of various levels: biological, genetic, psychological, social and cultural. However, the biological and genetic evidence have been the main hypotheses tested in scientific research in the world. This article aims to review research studies about the existence of genetic and biological evidence that determine homosexual orientation. Was conducted a review of the literature, using the database MedLine/PubMed and Google scholar. The papers and books were searched in Portuguese and English, using the following keywords: sexual orientation, sexual behavior, homosexuality, developmental Biology and genetics. Was selected papers of the last 22 years. Were found five main theories about the biological components: (1) fraternal birth order, (2) brain androgenization and 2D:4D ratio; (3) brain activation by pheromones; and (4) epigenetic inheritance; and four theories about the genetic components: (1) genetic polymorphism; (2) pattern of X-linked inheritance; (3) monozygotic twins; and (4) sexual antagonistic selection. Concluded that there were many scientific evidence found over time to explain some of biological and genetic components of homosexuality, especially in males. However, today, there is no definitive explanation about what are the determinants of homosexual orientation components.